login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A183038
G.f.: exp( Sum_{n>=1} A051064(n)*3^A051064(n)*x^n/n ) where A051064(n) equals the 3-adic valuation of 3n.
3
1, 3, 6, 15, 30, 51, 93, 156, 240, 387, 597, 870, 1311, 1920, 2697, 3873, 5448, 7422, 10278, 14016, 18636, 25098, 33402, 43548, 57333, 74757, 95820, 123780, 158637, 200391, 254778, 321798, 401451, 503490, 627915, 774726, 960156, 1184205, 1446873
OFFSET
0,2
COMMENTS
Compare to B(x), the g.f. of the number of partitions of 3n into powers of 3 (A005704):
B(x) = exp( Sum_{n>=1} 3^A051064(n)*x^n/n ) = (1-x)^(-1)*Product_{n>=0} 1/(1 - x^(3^n)).
FORMULA
G.f. satisfies: A(x) = (1-x^3)/(1-x)^3 * A(x^3)^2/A(x^9).
G.f. satisfies: A(x) = A(x^3)*G(x) where G(x) = G(x^3)*(1+x+x^2)/(1-x)^2 is the g.f. of A161809.
Define TRISECTIONS: A(x) = T_0(x^3) + x*T_1(x^3) + x^2*T_2(x^3), then:
T_1(x)/T_0(x) = 3*(1 + 2*x)/(1 + 7*x + x^2) and
T_2(x)/T_0(x) = 3*(2 + x)/(1 + 7*x + x^2).
EXAMPLE
G.f.: A(x) = 1 + 3*x + 6*x^2 + 15*x^3 + 30*x^4 + 51*x^5 + 93*x^6 +...
log(A(x)) = 3*x + 3*x^2/2 + 18*x^3/3 + 3*x^4/4 + 3*x^5/5 + 18*x^6/6 + 3*x^7/7 + 3*x^8/8 + 81*x^9/9 + 3*x^10/10 + 3*x^11/11 + 18*x^12/12 +...
G.f. satisfies A(x) = A(x^3)*G(x) where G(x) is the g.f. of A161809:
G(x) = 1 + 3*x + 6*x^2 + 12*x^3 + 21*x^4 + 33*x^5 + 51*x^6 +...
TRISECTIONS of g.f. begin:
T_0(x) = 1 + 15*x + 93*x^2 + 387*x^3 + 1311*x^4 + 3873*x^5 +...
T_1(x) = 3 + 30*x + 156*x^2 + 597*x^3 + 1920*x^4 + 5448*x^5 +...
T_2(x) = 6 + 51*x + 240*x^2 + 870*x^3 + 2697*x^4 + 7422*x^5 +...
where the ratios involve Fibonacci numbers:
T_1(x)/T_0(x) = 3*(1 - 5*x + 34*x^2 - 233*x^3 +...+ (-1)^n*Fibonacci(4n+1)*x^n +...);
T_2(x)/T_0(x) = 3*(2 - 13*x + 89*x^2 - 610*x^3 +...+ (-1)^n*Fibonacci(4n+3)*x^n +...).
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n, valuation(3*m, 3)*3^valuation(3*m, 3)*x^m/m)+x*O(x^n)), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 19 2010
STATUS
approved