OFFSET
0,2
COMMENTS
FORMULA
G.f. satisfies: A(x) = (1-x^3)/(1-x)^3 * A(x^3)^2/A(x^9).
G.f. satisfies: A(x) = A(x^3)*G(x) where G(x) = G(x^3)*(1+x+x^2)/(1-x)^2 is the g.f. of A161809.
Define TRISECTIONS: A(x) = T_0(x^3) + x*T_1(x^3) + x^2*T_2(x^3), then:
T_1(x)/T_0(x) = 3*(1 + 2*x)/(1 + 7*x + x^2) and
T_2(x)/T_0(x) = 3*(2 + x)/(1 + 7*x + x^2).
EXAMPLE
G.f.: A(x) = 1 + 3*x + 6*x^2 + 15*x^3 + 30*x^4 + 51*x^5 + 93*x^6 +...
log(A(x)) = 3*x + 3*x^2/2 + 18*x^3/3 + 3*x^4/4 + 3*x^5/5 + 18*x^6/6 + 3*x^7/7 + 3*x^8/8 + 81*x^9/9 + 3*x^10/10 + 3*x^11/11 + 18*x^12/12 +...
G.f. satisfies A(x) = A(x^3)*G(x) where G(x) is the g.f. of A161809:
G(x) = 1 + 3*x + 6*x^2 + 12*x^3 + 21*x^4 + 33*x^5 + 51*x^6 +...
TRISECTIONS of g.f. begin:
T_0(x) = 1 + 15*x + 93*x^2 + 387*x^3 + 1311*x^4 + 3873*x^5 +...
T_1(x) = 3 + 30*x + 156*x^2 + 597*x^3 + 1920*x^4 + 5448*x^5 +...
T_2(x) = 6 + 51*x + 240*x^2 + 870*x^3 + 2697*x^4 + 7422*x^5 +...
where the ratios involve Fibonacci numbers:
T_1(x)/T_0(x) = 3*(1 - 5*x + 34*x^2 - 233*x^3 +...+ (-1)^n*Fibonacci(4n+1)*x^n +...);
T_2(x)/T_0(x) = 3*(2 - 13*x + 89*x^2 - 610*x^3 +...+ (-1)^n*Fibonacci(4n+3)*x^n +...).
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n, valuation(3*m, 3)*3^valuation(3*m, 3)*x^m/m)+x*O(x^n)), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 19 2010
STATUS
approved