%I #20 Jan 15 2019 23:42:51
%S 23,71,119,262,358,740,932,1697,2248,3588,4690,7371,9312,13814,17959,
%T 25289,32406,45056,57015,77383,98043,129678,163451,214120,267217,
%U 344786,429842,547308,677897,856601,1054330,1320077
%N a(n) = 24*A138879(n) - A187219(n).
%C Partial sums give the positive terms of A183011, the numerators of the Bruinier-Ono formula for the partition function.
%H Omar E. Pol, <a href="http://www.polprimos.com/imagenespub/polpar02.jpg">Illustration of the seven regions of 5</a>
%p A066186 := proc(n) n*combinat[numbpart](n) ; end proc:
%p A138879 := proc(n) A066186(n)-A066186(n-1) ; end proc:
%p A002865 := proc(n) if n = 0 then 1; else combinat[numbpart](n)-combinat[numbpart](n-1) ; end if; end proc:
%p A183012 := proc(n) if n = 1 then 23; else 24*A138879(n)-A002865(n) ; end if; end proc:
%p seq(A183012(n),n=1..80) ; # _R. J. Mathar_, Jan 27 2011
%Y Cf. A000041, A002865, A135010, A138879, A183010, A183011, A186114, A206437.
%K nonn,easy
%O 1,1
%A _Omar E. Pol_, Jan 22 2011