login
A182949
Joint-rank array of the numbers (3*i+1)*3^j, where i>=0, j>=0, by antidiagonals
2
1, 2, 3, 5, 7, 4, 14, 19, 11, 6, 41, 55, 32, 16, 8, 122, 163, 95, 46, 21, 9, 365, 487, 284, 136, 60, 25, 10, 1094, 1459, 851, 406, 177, 73, 29, 12, 3281, 4375, 2552, 1216, 528, 217, 86, 34, 13, 9842, 13123, 7655, 3646, 1581, 649, 257, 100, 38, 15
OFFSET
1,2
COMMENTS
Joint-rank arrays are defined in the first comment at A182801. As for any joint-rank array, A182949 is a permutation of the positive integers, but, a fortiori, A182949 is an interspersion: after initial terms every row is interspersed with all other rows. The numbers (3*i+1)*3^j as an array comprise A182828; and sorted, A026225.
(row 1)=A007051.
(row 2)=A052919.
(col 1)=A182829.
EXAMPLE
Northwest corner:
1....2....5....14...
3....7...19....55...
4...11...32....95...
6...16...46...136...
MATHEMATICA
M[i_, j_]:=j+Floor[Log[3*i+1]/Log[3]]; T[i_, j_]:=Sum[Floor[2/3+(3*i+1)*3^(j-k-1)], {k, 0, M[i, j]}]; TableForm[Table[T[i, j], {i, 0, 9}, {j, 0, 9}]]
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Dec 15 2010
STATUS
approved