login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A182937 Triangle in which n-th row lists all integer partitions of n, in order of traversing the periphery of the Fenner-Loizou tree in the clockwise sense. 3
1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 2, 1, 1, 3, 1, 4, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 4, 1, 5, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 5, 1, 6, 4, 2, 3, 2, 1, 3, 3, 2, 2, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

If the Fenner-Loizou tree is traversed in the counterclockwise sense (preorder traversal) the integer partitions are in lexicographic order.

REFERENCES

T. I. Fenner and G. Loizou, Comp. J. 23 (1980), 332-337.

D. E. Knuth, TAOCP 4 (2005), fasc. 3, 7.2.1.4, exercise 10.

LINKS

Table of n, a(n) for n=1..83.

Peter Luschny, Integer Partition Trees, OEIS wiki.

EXAMPLE

First five rows are:

[[1]]

[[1, 1], [2]]

[[1, 1, 1], [2, 1], [3]]

[[1, 1, 1, 1], [2, 1, 1], [3, 1], [4], [2, 2]]

[[1, 1, 1, 1, 1], [2, 1, 1, 1], [3, 1, 1], [4, 1], [5], [3, 2], [2, 2,1]]

CROSSREFS

See A036036 for the Hindenburg (graded reflected colexicographic) ordering.

See A036037 for the graded colexicographic ordering.

See A080576 for the Maple (graded reflected lexicographic) ordering.

See A080577 for the Mathematica (graded reverse lexicographic) ordering.

See A193073 for the graded lexicographic ordering.

See A228100 for the Fenner-Loizou (binary tree) ordering.

Sequence in context: A193073 A228100 A211992 * A185147 A206921 A123529

Adjacent sequences:  A182934 A182935 A182936 * A182938 A182939 A182940

KEYWORD

nonn,tabf

AUTHOR

Peter Luschny, Jan 21 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified September 22 00:25 EDT 2017. Contains 292326 sequences.