This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A182935 Numerators of an asymptotic series for the factorial function (Stirling's formula with half-shift). 3
 1, -1, 1, 1003, -4027, -5128423, 168359651, 68168266699, -587283555451, -221322134443186643, 3253248645450176257, 52946591945344238676937, -3276995262387193162157789, -6120218676760621380031990351 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS G_n = A182935(n)/A144618(n). These rational numbers provide the coefficients for an asymptotic expansion of the factorial function. The relationship between these coefficients and the Bernoulli numbers are due to De Moivre, 1730 (see Laurie). LINKS Dirk Laurie, Old and new ways of computing the gamma function, page 14, 2005. Peter Luschny, Approximation Formulas for the Factorial Function. W. Wang, Unified approaches to the approximations of the gamma function, J. Number Theory (2016). FORMULA z! ~ sqrt(2 Pi) (z+1/2)^(z+1/2) e^(-z-1/2)  Sum_{n>=0} G_n / (z+1/2)^n. EXAMPLE G_0 = 1, G_1 = -1/24, G_2 = 1/1152, G_3 = 1003/414720. MAPLE G := proc(n) option remember; local j, R; R := seq(2*j, j=1..iquo(n+1, 2)); `if`(n=0, 1, add(bernoulli(j, 1/2)*G(n-j+1)/(n*j), j=R)) end: A182935 := n -> numer(G(n)); seq(A182935(i), i=0..15); MATHEMATICA a[0] = 1; a[n_] := a[n] = Sum[ BernoulliB[j, 1/2]*a[n-j+1]/(n*j), {j, 2, n+1, 2}]; Table[a[n] // Numerator, {n, 0, 15}] (* Jean-François Alcover, Jul 26 2013, after Maple *) CROSSREFS Cf. A001163, A001164, A144618. Sequence in context: A169828 A151956 A111349 * A013686 A153226 A202147 Adjacent sequences:  A182932 A182933 A182934 * A182936 A182937 A182938 KEYWORD sign,frac AUTHOR Peter Luschny, Feb 24 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.