login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A182933 Generalized Bell numbers based on the rising factorial powers; square array read by antidiagonals. 5
1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 5, 27, 13, 1, 1, 15, 409, 778, 73, 1, 1, 52, 9089, 104149, 37553, 501, 1, 1, 203, 272947, 25053583, 57184313, 2688546, 4051, 1, 1, 877, 10515147, 9566642254, 192052025697, 56410245661, 265141267, 37633, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,8

COMMENTS

These numbers are related to the generalized Bell numbers based on the falling factorial powers (A090210).

The square array starts for n>=0, k>=0:

n\k=0,1,..  A000012,A000262,A182934,...

0: A000012: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...

1: A000110: 1, 1, 2, 5, 15, 52, 203, 877, 4140, ...

2: A094577: 1, 3, 27, 409, 9089, 272947, 10515147, ...

3: A182932: 1, 13, 778, 104149, 25053583, 9566642254, ...

4:        : 1, 73, 37553, 57184313, 192052025697, ...

5:        : 1, 501, 2688546, 56410245661, ...

6:  ....  : 1, 4051, 265141267, 89501806774945, ...

LINKS

Table of n, a(n) for n=0..44.

FORMULA

Let r_k = [n+1,...,n+1] (k occurrences of n+1), s_k = [1,...,1,2] (k-1 occurrences of 1) and F_k the generalized hypergeometric function of type k_F_k, then a(n,k) = exp(-1)*n!^k*F_k(r_k, s_k | 1).

Let B_{n}(x) = sum_{j>=0}(exp((j+n-1)!/(j-1)!*x-1)/j!) then a(n,k) = k! [x^k] series(B_{n}(x)), where [x^k] denotes the coefficient of x^k in the Taylor series for B_{n}(x).

MAPLE

A182933_AsSquareArray := proc(n, k) local r, s, i;

r := [seq(n+1, i=1..k)]; s := [seq(1, i=1..k-1), 2];

exp(-x)*n!^k*hypergeom(r, s, x); round(evalf(subs(x=1, %), 99)) end:

seq(lprint(seq(A182933_AsSquareArray(n, k), k=0..6)), n=0..6);

MATHEMATICA

a[n_, k_] := Exp[-1]*n!^k*HypergeometricPFQ[ Table[n+1, {k}], Append[ Table[1, {k-1}], 2], 1.]; Table[ a[n-k, k] // Round , {n, 0, 8}, {k, n, 0, -1}] // Flatten (* Jean-Fran├žois Alcover, Jul 29 2013 *)

CROSSREFS

Cf. A000110, A020556, A069223, A071379, A090209, A002720, A069948, A182925, A182924, A182933.

Sequence in context: A131739 A011151 A140878 * A068348 A308290 A204167

Adjacent sequences:  A182930 A182931 A182932 * A182934 A182935 A182936

KEYWORD

nonn,tabl

AUTHOR

Peter Luschny, Mar 29 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 22 10:52 EST 2020. Contains 331144 sequences. (Running on oeis4.)