login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A182929 The rows of the binomial triangle reduced to balanced ternary lists encoded as decimal numbers. 1
0, 1, 4, 7, 16, 61, 160, 547, 1456, 5110, 13120, 44287, 118096, 398581, 1075840, 3720094, 9565936, 32285041, 86093440, 290565367, 774840976, 2711943430, 7059662080, 23535794707, 61987278400, 212693848522, 564945153280, 1979718703900, 5083731656656 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Define an operation ~: ZxZ -> {-1,0,1} (Z integers) by b ~ n = (b sigmod n) [|b sigmod n|=1]. Here [] is the Iverson bracket and sigmod is the signed mod operation defined as b sigmod n = b - n*ceil(b/n - 1/2) if n <> 0 and b otherwise. Further let T(n) = list_{0<=k<n} binomial(n-1,k) ~ n for n > 1 and n if n is 0 or 1. We call T(n) the binomial notation of n.

A non-obvious arithmetical property of the binomial triangle becomes apparent from these balanced ternary lists: the rows which have an odd prime number as an index and only these rows are represented by a ternary list where 1 and -1 are alternating. One might also say that an odd integer is prime iff n > 1 and its binomial notation is zerofree.

Finally a(n) = sum_{0<=k<n} T(n)[k]*3^k.

The sequence starts at n=0 although the definitions can be extended to the negative integers by flipping the signs of the ternary digits. To illustrate the definitions:

  n          T(n)           a(n)

---------------------------------

[-6] -1, 1, 0, 0, 1, -1   [-160]

[-5]  -1, 1, -1, 1, -1    [ -61]

[-4]    -1, 1, 1, -1      [ -16]

[-3]     -1, 1, -1        [  -7]

[-2]       -1, -1         [  -4]

[-1]         -1           [  -1]

[ 0]         0            [   0]

[ 1]         1            [   1]

[ 2]       1, 1           [   4]

[ 3]     1, -1, 1         [   7]

[ 4]   1, -1, -1, 1       [  16]

[ 5]  1, -1, 1, -1, 1     [  61]

[ 6] 1, -1, 0, 0, -1, 1   [ 160]

LINKS

Table of n, a(n) for n=0..28.

Wikipedia, Balanced ternary

MAPLE

A182929 := proc(n) local lop, k, Tlist;

lop := proc(a, n) if n = 0 then a else mods(a, n);

`if`(abs(%)=1, %, 0) fi end;

Tlist := proc(n) `if`(abs(n)<2, n, seq(signum(n)*

lop(binomial(abs(n)-1, k), n), k=0..abs(n)-1)) end:

[Tlist(n)]; signum(n)*add(3^k*%[k+1], k=0..abs(n)-1) end:

seq(A182929(n), n=0..30);

CROSSREFS

Cf. A007318, A047999, A001317.

Sequence in context: A182561 A246915 A013625 * A124402 A216552 A034736

Adjacent sequences:  A182926 A182927 A182928 * A182930 A182931 A182932

KEYWORD

nonn

AUTHOR

Peter Luschny, Mar 16 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 21 12:45 EST 2014. Contains 249778 sequences.