login
a(n) = n$ / A055773(n), where n$ denotes the swinging factorial (A056040).
1

%I #17 Jun 22 2019 09:17:45

%S 1,1,1,1,2,2,4,4,2,18,36,36,12,12,24,360,90,90,20,20,4,84,168,168,28,

%T 700,1400,37800,5400,5400,720,720,90,2970,5940,207900,23100,23100,

%U 46200,1801800,180180,180180,17160

%N a(n) = n$ / A055773(n), where n$ denotes the swinging factorial (A056040).

%C a(n) = n$ * P(floor(n/2))/P(n), P(n) primorial number A034386.

%C A182922(n) / a(n) = A000142(n) / A056040(n) = A180064(n).

%p swingfact := n -> n! / iquo(n,2)!^2;

%p A182923 := n -> swingfact(n) / mul(k, k=select(isprime, [$iquo(n,2)+1..n])):

%t sf[n_] := n!/Floor[n/2]!^2;

%t a[n_] := sf[n]/Numerator[n!/Floor[n/2]!^4];

%t Table[a[n], {n, 0, 42}] (* _Jean-François Alcover_, Jun 22 2019 *)

%Y Cf. A182922, A034386, A055773, A180064.

%K nonn

%O 0,5

%A _Peter Luschny_, Mar 05 2011