login
A182909
Ranks of composite numbers when all prime powers p^n for n>=1 are jointly ranked.
1
3, 6, 7, 10, 14, 15, 18, 23, 27, 32, 41, 42, 44, 53, 68, 70, 78, 86, 91, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142
OFFSET
1,1
COMMENTS
The complement of A027883.
EXAMPLE
In the sequence A000961 (2,3,4,5,7,8,9,11,13,16,
17,19,23,25,27,...) of prime powers p^n for n>=1, the
composites 4,8,9,16,25,27,... occur with ranks
3,6,7,10,14,15...
MATHEMATICA
T[i_, j_]:=Sum[Floor[j*Log[Prime[i]]/Log[Prime[h]]], {h, 1, PrimePi[Prime[i]^j]}]; Complement[Range[200], Table[Flatten[Table[T[i, j], {i, 1, 80}, {j, 1, 1}]]]
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Dec 13 2010
STATUS
approved