login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A182755 Expansion of (1+35*x)/(1-90*x^2). 5
1, 35, 90, 3150, 8100, 283500, 729000, 25515000, 65610000, 2296350000, 5904900000, 206671500000, 531441000000, 18600435000000, 47829690000000, 1674039150000000, 4304672100000000, 150663523500000000, 387420489000000000, 13559717115000000000, 34867844010000000000 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

a(1) = 1, a(2) = 35, for n >= 3; a(n) = the smallest number h > a(n-1) such that [[a(n-2) + a(n-1)] * [a(n-2) + h] * [a(n-1) + h]] / [a(n-2) * a(n-1) * h] is integer (= 130). (conjectured)

10^(floor((n - 1)/2)) | a(n), for n>=1. - G. C. Greubel, Jan 11 2018

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (0,90).

FORMULA

a(2n) = 35* a(2n-1), a(2n+1) = 18/7 * a(2n).

a(2n) = 35*90^(n-1), a(2n+1) = 90^n.

EXAMPLE

For n = 4; a(2) = 35, a(3) = 90, a(4) = 3150 before [(35+90)*(35+3150)*(90+3150)]  / (35*90*3150) = 130.

MATHEMATICA

LinearRecurrence[{0, 90}, {1, 35}, 50] (* or *) CoefficientList[Series[(1 + 35*x)/(1-90*x^2), {x, 0, 50}], x] (* G. C. Greubel, Jan 11 2018 *)

PROG

(PARI) Vec((1+35*x)/(1-90*x^2)+O(x^99)) \\ Charles R Greathouse IV, Sep 25 2012

I:=[1, 35]; [n le 2 select I[n] else 90*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 11 2018

CROSSREFS

Cf. A182751, A182752, A182753, A182754, A182756, A182757, A038754.

Sequence in context: A086337 A118631 A220041 * A300554 A020295 A020164

Adjacent sequences:  A182752 A182753 A182754 * A182756 A182757 A182758

KEYWORD

nonn,easy

AUTHOR

Jaroslav Krizek, Nov 27 2010

EXTENSIONS

Terms a(12) onward added by G. C. Greubel, Jan 11 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 22 07:23 EDT 2019. Contains 325216 sequences. (Running on oeis4.)