login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A182746 Bisection (even part) of number of partitions that do not contain 1 as a part A002865. 14
1, 1, 2, 4, 7, 12, 21, 34, 55, 88, 137, 210, 320, 478, 708, 1039, 1507, 2167, 3094, 4378, 6153, 8591, 11914, 16424, 22519, 30701, 41646, 56224, 75547, 101066, 134647, 178651, 236131, 310962, 408046, 533623, 695578, 903811, 1170827, 1512301, 1947826, 2501928 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

a(n+1) is the number of partitions p of 2n-1 such that (number of parts of p) is a part of p, for n >=0. - Clark Kimberling, Mar 02 2014

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..1000

Marco Baggio, Vasilis Niarchos, Kyriakos Papadodimas, and Gideon Vos, Large-N correlation functions in N = 2 superconformal QCD, arXiv preprint arXiv:1610.07612 [hep-th], 2016.

K. Blum, Bounds on the Number of Graphical Partitions, arXiv:2103.03196 [math.CO], 2021. See Table on p. 7.

FORMULA

a(n) = p(2*n) - p(2*n-1), where p is the partition function, A000041. - George Beck, Jun 05 2017 [Shifted by Georg Fischer, Jun 20 2022]

MAPLE

b:= proc(n, i) option remember;

if n<0 then 0

elif n=0 then 1

elif i<2 then 0

else b(n, i-1) +b(n-i, i)

fi

end:

a:= n-> b(2*n, 2*n):

seq(a(n), n=0..40); # Alois P. Heinz, Dec 01 2010

MATHEMATICA

Table[Count[IntegerPartitions[2 n -1], p_ /; MemberQ[p, Length[p]]], {n, 20}] (* Clark Kimberling, Mar 02 2014 *)

b[n_, i_] := b[n, i] = Which[n<0, 0, n==0, 1, i<2, 0, True, b[n, i-1] + b[n-i, i]]; a[n_] := b[2*n, 2*n]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Sep 21 2015, after Alois P. Heinz *)

a[n_] := PartitionsP[2*n] - PartitionsP[2*n - 1]; Table[a[n], {n, 0, 40}] (* George Beck, Jun 05 2017 *)

PROG

(PARI) a(n)=numbpart(2*n)-numbpart(2*n-1) \\ Charles R Greathouse IV, Jun 06 2017

CROSSREFS

Cf. A000041, A002865, A058696, A135010, A138121, A182740, A182742, A182743, A182747.

Sequence in context: A178937 A168368 A305106 * A100482 A301762 A003293

Adjacent sequences: A182743 A182744 A182745 * A182747 A182748 A182749

KEYWORD

nonn,easy

AUTHOR

Omar E. Pol, Dec 01 2010

EXTENSIONS

More terms from Alois P. Heinz, Dec 01 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 23:05 EST 2022. Contains 358710 sequences. (Running on oeis4.)