%I #21 Nov 03 2017 03:44:13
%S 0,2,1,6,6,2,15,15,10,3,28,35,24,14,4,55,63,55,33,18,5,90,121,98,75,
%T 42,22,6,154,195,187,133,95,51,26,7,240,330,300,253,168,115,60,30,8,
%U 378,510,506,405,319,203,135,69,34,9
%N Square array T(n,k) = (n*k-1)*A000041(n) read by antidiagonals upwards.
%F T(n,1) = A182724(n).
%F T(n,24) = A183011(n).
%e Square array T(n,k) begins:
%e 0, 1, 2, 3, 4, 5, ...
%e 2, 6, 10, 14, 18, 22, ...
%e 6, 15, 24, 33, 42, 51, ...
%e 15, 35, 55, 75, 95, 115, ...
%e 28, 63, 98, 133, 168, 203, ...
%e 55, 121, 187, 253, 319, 385, ...
%p T:= (n,k)-> (n*k-1)*combinat[numbpart](n):
%p seq (seq (T(d-k, k), k=1..d-1), d=2..11);
%t Table[With[{n = m - k + 1}, (n k - 1) PartitionsP[n]], {m, 10}, {k, m}] // Flatten (* _Michael De Vlieger_, Nov 02 2017 *)
%Y Cf. A000041, A135010, A182724, A182728, A183009, A183010, A183011.
%K nonn,easy,tabl
%O 1,2
%A _Omar E. Pol_, Jan 22 2011