login
A182713
Number of 3's in the last section of the set of partitions of n.
7
0, 0, 1, 0, 1, 2, 2, 3, 6, 6, 10, 14, 18, 24, 35, 42, 58, 76, 97, 124, 164, 202, 261, 329, 412, 514, 649, 795, 992, 1223, 1503, 1839, 2262, 2741, 3346, 4056, 4908, 5919, 7150, 8568, 10297, 12320, 14721, 17542, 20911, 24808, 29456, 34870, 41232, 48652, 57389
OFFSET
1,6
COMMENTS
Also number of 3's in all partitions of n that do not contain 1 as a part.
Also 0 together with the first differences of A024787. - Omar E. Pol, Nov 13 2011
a(n) is the number of partitions of n having fewer 1s than 2s; e.g., a(7) counts these 3 partitions: [5, 2], [3, 2, 2], [2, 2, 2, 1]. - Clark Kimberling, Mar 31 2014
The last section of the set of partitions of n is also the n-th section of the set of partitions of any integer >= n. - Omar E. Pol, Apr 07 2014
LINKS
FORMULA
It appears that A000041(n) = a(n+1) + a(n+2) + a(n+3), n >= 0. - Omar E. Pol, Feb 04 2012
a(n) ~ A000041(n)/3 ~ exp(Pi*sqrt(2*n/3)) / (12*sqrt(3)*n). - Vaclav Kotesovec, Jan 03 2019
EXAMPLE
a(7) = 2 counts the 3's in 7 = 4+3 = 3+2+2. The 3's in 7 = 3+3+1 = 3+2+1+1 = 3+1+1+1+1 do not count.
From Omar E. Pol, Oct 27 2012: (Start)
--------------------------------------
Last section Number
of the set of of
partitions of 7 3's
--------------------------------------
7 .............................. 0
4 + 3 .......................... 1
5 + 2 .......................... 0
3 + 2 + 2 ...................... 1
. 1 .......................... 0
. 1 ...................... 0
. 1 ...................... 0
. 1 .................. 0
. 1 ...................... 0
. 1 .................. 0
. 1 .................. 0
. 1 .............. 0
. 1 .............. 0
. 1 .......... 0
. 1 ...... 0
------------------------------------
. 5 - 3 = 2
.
In the last section of the set of partitions of 7 the difference between the sum of the third column and the sum of the fourth column is 5 - 3 = 2 equaling the number of 3's, so a(7) = 2 (see also A024787).
(End)
MAPLE
b:= proc(n, i) option remember; local g, h;
if n=0 then [1, 0]
elif i<2 then [0, 0]
else g:= b(n, i-1); h:= `if`(i>n, [0, 0], b(n-i, i));
[g[1]+h[1], g[2]+h[2]+`if`(i=3, h[1], 0)]
fi
end:
a:= n-> b(n, n)[2]:
seq(a(n), n=1..70); # Alois P. Heinz, Mar 18 2012
MATHEMATICA
z = 60; f[n_] := f[n] = IntegerPartitions[n]; t1 = Table[Count[f[n], p_ /; Count[p, 1] < Count[p, 2]], {n, 0, z}] (* Clark Kimberling, Mar 31 2014 *)
b[n_, i_] := b[n, i] = Module[{g, h}, If[n == 0, {1, 0}, If[i<2, {0, 0}, g = b[n, i-1]; h = If[i>n, {0, 0}, b[n-i, i]]; Join[g[[1]] + h[[1]], g[[2]] + h[[2]] + If[i == 3, h[[1]], 0]]]]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 1, 70}] (* Jean-François Alcover, Nov 30 2015, after Alois P. Heinz *)
Table[Count[Flatten@Cases[IntegerPartitions[n], x_ /; Last[x] != 1], 3], {n, 51}] (* Robert Price, May 15 2020 *)
PROG
(Sage) A182713 = lambda n: sum(list(p).count(3) for p in Partitions(n) if 1 not in p) # D. S. McNeil, Nov 29 2010
CROSSREFS
KEYWORD
nonn
AUTHOR
Omar E. Pol, Nov 28 2010
STATUS
approved