login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A182712 Number of 2's in the last section of the set of partitions of n. 25
0, 0, 1, 0, 2, 1, 4, 3, 8, 7, 15, 15, 27, 29, 48, 53, 82, 94, 137, 160, 225, 265, 362, 430, 572, 683, 892, 1066, 1370, 1640, 2078, 2487, 3117, 3725, 4624, 5519, 6791, 8092, 9885, 11752, 14263, 16922, 20416, 24167, 29007, 34254, 40921, 48213, 57345, 67409 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Essentially the same as A087787 but here a(n) is the number of 2's in the last section of n, not n-2. See also A100818.

Note that a(1)..a(11) coincide with a(2)..a(12) of A005291.

Also number of 2's in all partitions of n that do not contain 1's as a part, if n >= 1. Also 0 together with the first differences of A024786. - Omar E. Pol, Nov 13 2011

Also number of 2's in the n-th section of the set of partitions of any integer >= n. For the definition of "section" see A135010. - Omar E. Pol, Dec 01 2013

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..1000

FORMULA

It appears that A000041(n) = a(n+1) + a(n+2), n >= 0. - Omar E. Pol, Feb 04 2012

G.f.: (x^2/(1 + x))*Product_{k>=1} 1/(1 - x^k). - Ilya Gutkovskiy, Jan 03 2017

a(n) ~ exp(Pi*sqrt(2*n/3)) / (8*sqrt(3)*n). - Vaclav Kotesovec, Jun 02 2018

EXAMPLE

a(6) = 4 counts the 2's in 6 = 4+2 = 2+2+2. The 2's in 6 = 3+2+1 = 2+2+1+1 = 2+1+1+1+1 do not count. - Omar E. Pol, Nov 13 2011

From Omar E. Pol, Oct 27 2012: (Start)

----------------------------------

Last section               Number

of the set of                of

partitions of 6             2's

----------------------------------

6 .......................... 0

3 + 3 ...................... 0

4 + 2 ...................... 1

2 + 2 + 2 .................. 3

.   1 ...................... 0

.       1 .................. 0

.       1 .................. 0

.           1 .............. 0

.           1 .............. 0

.               1 .......... 0

.                   1 ...... 0

---------------------------------

.   8 - 4 =                  4

.

In the last section of the set of partitions of 6 the difference between the sum of the second column and the sum of the third column is 8 - 4 = 4, the same as the number of 2's, so a(6) = 4 (see also A024786).

(End)

PROG

(Sage) A182712 = lambda n: sum(list(p).count(2) for p in Partitions(n) if 1 not in p) # Omar E. Pol, Nov 13 2011

CROSSREFS

Column 2 of A194812.

Cf. A005291, A087787, A100818, A135010, A138121, A182703, A182713, A182714.

Sequence in context: A152194 A268630 A087787 * A100818 A005291 A106624

Adjacent sequences:  A182709 A182710 A182711 * A182713 A182714 A182715

KEYWORD

nonn,easy

AUTHOR

Omar E. Pol, Nov 28 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 17 00:25 EST 2020. Contains 331976 sequences. (Running on oeis4.)