login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A182709 Sum of the emergent parts of the partitions of n. 22
0, 0, 0, 2, 3, 11, 14, 33, 45, 81, 109, 185, 237, 372, 490, 715, 928, 1326, 1693, 2348, 2998, 4032, 5119, 6795, 8530, 11132, 13952, 17927, 22314, 28417, 35126, 44279, 54532, 68062, 83422, 103427, 126063, 155207, 188506, 230547, 278788, 339223, 408482 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

Here the "emergent parts" of the partitions of n are defined to be the parts (with multiplicity) of all the partitions that do not contain "1" as a part, removed by one copy of the smallest part of every partition. Note that these parts are located in the head of the last section of the set of partitions of n. For more information see A182699.

Also total sum of parts of the regions that do not contain 1 as a part in the last section of the set of partitions of n (Cf. A083751, A187219). - Omar E. Pol, Mar 04 2012

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Jason Kimberley)

Omar E. Pol, Illustration: How to build the last section of the set of partitions (copy, paste and fill)

Omar E. Pol, Illustration of the shell model of partitions (2D view)

FORMULA

a(n) = A138880(n) - A182708(n).

a(n) = A066186(n) - A066186(n-1) - A046746(n) = A138879(n) - A046746(n). - Omar E. Pol, Aug 01 2013

a(n) ~ Pi * exp(Pi*sqrt(2*n/3)) / (12*sqrt(2*n)). - Vaclav Kotesovec, Jan 03 2019

EXAMPLE

For n=7 the partitions of 7 that do not contain "1" as a part are

7

4 + 3

5 + 2

3 + 2 + 2

Then remove one copy of the smallest part of every partition. The rest are the emergent parts:

.,

4, .

5, .

3, 2, .

The sum of these parts is 4 + 5 + 3 + 2 = 14, so a(7)=14.

For n=10 the illustration in the link shows the location of the emergent parts (colored yellow and green) and the location of the filler parts (colored blue) in the last section of the set of partitions of 10.

MAPLE

b:= proc(n, i) option remember;

      if n<0 then 0

    elif n=0 then 1

    elif i<2 then 0

    else b(n, i-1) +b(n-i, i)

      fi

    end:

c:= proc(n, i, k) option remember;

      if n<0 then 0

    elif n=0 then k

    elif i<2 then 0

    else c(n, i-1, k) +c(n-i, i, i)

      fi

    end:

a:= n-> n*b(n, n) - c(n, n, 0):

seq(a(n), n=1..40);  #  Alois P. Heinz, Dec 01 2010

MATHEMATICA

f[n_]:=Total[Flatten[Most/@Select[IntegerPartitions[n], !MemberQ[#, 1]&]]]; Table[f[i], {i, 50}] (* Harvey P. Dale, Dec 28 2010 *)

b[n_, i_] := b[n, i] = Which[n<0, 0, n==0, 1, i<2, 0, True, b[n, i-1] + b[n - i, i]]; c[n_, i_, k_] := c[n, i, k] = Which[n<0, 0, n==0, k, i<2, 0, True, c[n, i-1, k] + c[n-i, i, i]]; a[n_] := n*b[n, n] - c[n, n, 0]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Oct 08 2015, after Alois P. Heinz *)

CROSSREFS

Cf. A000041, A135010, A138121, A138879, A138880, A182699, A182703, A182708, A182740, A182742, A182743.

Row sums of A183152.

Sequence in context: A042665 A282235 A242821 * A321766 A041029 A158353

Adjacent sequences:  A182706 A182707 A182708 * A182710 A182711 A182712

KEYWORD

nonn,easy

AUTHOR

Omar E. Pol, Nov 28 2010, Nov 29 2010

EXTENSIONS

More terms from Alois P. Heinz, Dec 01 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 19 07:33 EDT 2019. Contains 324218 sequences. (Running on oeis4.)