login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A182699 Number of emergent parts in all partitions of n. 25
0, 0, 0, 0, 1, 1, 4, 4, 10, 12, 22, 27, 47, 56, 89, 112, 164, 205, 294, 364, 505, 630, 845, 1052, 1393, 1719, 2235, 2762, 3533, 4343, 5506, 6730, 8443, 10296, 12786, 15531, 19161, 23161, 28374, 34201, 41621, 49975, 60513, 72385, 87200, 103999, 124670, 148209 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,7

COMMENTS

Here the "emergent parts" of the partitions of n are defined to be the parts (with multiplicity) of all the partitions that do not contain "1" as a part, removed by one copy of the smallest part of every partition. Note that these parts are located in the head of the last section of the set of partitions of n.

Also, here the "filler parts" of the partitions of n are defined to be the parts of the last section of the set of partitions of n that are not the emergent parts.

For n >= 4, length of row n of A183152. - Omar E. Pol, Aug 08 2011

Also total number of parts of the regions that do not contain 1 as a part in the last section of the set of partitions of n (cf. A083751, A187219). - Omar E. Pol, Mar 04 2012

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..1000

Omar E. Pol, Illustration: How to build the last section of the set of partitions (copy, paste and fill)

Omar E. Pol, Illustration of the shell model of partitions (2D view)

FORMULA

a(n) = A138135(n) - A002865(n), n >= 1.

From Omar E. Pol, Oct 21 2011: (Start)

a(n) = A006128(n) - A006128(n-1) - A000041(n), n >= 1.

a(n) = A138137(n) - A000041(n), n >= 1. (End)

a(n) = A076276(n) - A006128(n-1), n >= 1. - Omar E. Pol, Oct 30 2011

EXAMPLE

For n = 6 the partitions of 6 contain four "emergent" parts: (3), (4), (2), (2), so a(6) = 4. See below the location of the emergent parts.

6

(3) + 3

(4) + 2

(2) + (2) + 2

5 + 1

3 + 2 + 1

4 + 1 + 1

2 + 2 + 1 + 1

3 + 1 + 1 + 1

2 + 1 + 1 + 1 + 1

1 + 1 + 1 + 1 + 1 + 1

For a(10) = 22 see the link for the location of the 22 "emergent parts" (colored yellow and green) and the location of the 42 "filler parts" (colored blue) in the last section of the set of partitions of 10.

MAPLE

b:= proc(n, i) option remember; local t, h;

      if n<0 then [0, 0, 0]

    elif n=0 then [0, 1, 0]

    elif i<2 then [0, 0, 0]

    else t:= b(n, i-1); h:= b(n-i, i);

         [t[1]+h[1]+h[2], t[2], t[3]+h[3]+h[1]]

      fi

    end:

a:= n-> b(n, n)[3]:

seq (a(n), n=0..50);  # Alois P. Heinz, Oct 21 2011

MATHEMATICA

b[n_, i_] := b[n, i] = Module[{t, h}, Which[n<0, {0, 0, 0}, n == 0, {0, 1, 0}, i<2 , {0, 0, 0}, True, t = b[n, i-1]; h = b[n-i, i]; Join [t[[1]] + h[[1]] + h[[2]], t[[2]], t[[3]] + h[[3]] + h[[1]] ]]]; a[n_] := b[n, n][[3]]; Table[a[n], {n, 0, 50}] (* Jean-Fran├žois Alcover, Jun 18 2015, after Alois P. Heinz *)

CROSSREFS

Cf. A000041, A002865, A135010, A138121, A138135, A182700, A182709, A182740.

Sequence in context: A006477 A233739 A279036 * A058596 A180964 A237668

Adjacent sequences:  A182696 A182697 A182698 * A182700 A182701 A182702

KEYWORD

nonn,easy

AUTHOR

Omar E. Pol, Nov 29 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 19 11:14 EDT 2019. Contains 324219 sequences. (Running on oeis4.)