The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A182597 Number of prime factors of form cn+1 for numbers 5^n+1 0
 1, 1, 1, 1, 2, 2, 2, 1, 2, 3, 2, 2, 1, 2, 2, 2, 2, 3, 2, 3, 2, 2, 1, 2, 2, 3, 1, 2, 3, 3, 3, 4, 4, 2, 3, 3, 2, 4, 2, 4, 3, 4, 1, 1, 1, 3, 4, 3, 3, 5, 4, 3, 1, 2, 4, 3, 1, 4, 4, 4, 2, 6, 3, 4, 2, 1, 5, 4, 3, 3, 2, 3, 3, 5, 3, 2, 4, 4, 4, 5, 4, 3, 4, 6, 3, 4, 4, 3, 3, 2, 2, 4, 4, 4, 4, 5, 4, 1, 4, 1, 7, 1, 5, 5, 2, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,5 COMMENTS Repeated prime factors are counted. LINKS S. Mustonen, On prime factors of numbers m^n+-1 Seppo Mustonen, On prime factors of numbers m^n+-1 [Local copy] EXAMPLE For n=11, 5^n+1=48828126=2*3*23*67*5281 has three prime factors of form, namely 23=2n+1, 67=6n+1, 5281=480n+1. Thus a(11)=3. MATHEMATICA m = 5; n = 2; nmax = 107; While[n <= nmax, {l = FactorInteger[m^n + 1]; s = 0;      For[i = 1, i <= Length[l],       i++, {p = l[[i, 1]];        If[IntegerQ[(p - 1)/n] == True, s = s + l[[i, 2]]]; }];      a[n] = s; } n++; ]; Table[a[n], {n, 2, nmax}] Table[{p, e}=Transpose[FactorInteger[5^n+1]]; Sum[If[Mod[p[[i]], n] == 1, e[[i]], 0], {i, Length[p]}], {n, 2, 50}] CROSSREFS Sequence in context: A151931 A185636 A333212 * A290491 A194314 A006371 Adjacent sequences:  A182594 A182595 A182596 * A182598 A182599 A182600 KEYWORD nonn AUTHOR Seppo Mustonen, Nov 24 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 6 12:08 EDT 2020. Contains 333273 sequences. (Running on oeis4.)