

A182596


Number of prime factors of form cn+1 for numbers 3^n+1


0



1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 2, 3, 1, 3, 2, 2, 2, 3, 2, 1, 4, 2, 2, 2, 2, 3, 1, 2, 1, 4, 2, 1, 2, 3, 2, 5, 2, 2, 2, 1, 3, 3, 2, 3, 2, 2, 3, 6, 2, 2, 2, 3, 3, 5, 2, 2, 5, 2, 3, 5, 1, 2, 1, 2, 3, 6, 3, 5, 3, 2, 3, 6, 4, 1, 2, 3, 4, 7, 3, 4, 5, 4, 5, 8, 3, 3, 3, 6, 2, 6, 2, 4, 4, 3, 5, 6, 3, 2, 5, 3, 4, 6, 4, 3, 7, 4, 4, 7, 7, 3, 4, 3, 3, 6, 1, 2, 5, 4, 4, 6, 2, 3, 4, 4, 5, 6, 3
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,7


COMMENTS

Repeated prime factors are counted.


LINKS

Table of n, a(n) for n=2..130.
S. Mustonen, On prime factors of numbers m^n+1


EXAMPLE

For n=8, 3^n+1=6562=2*17*193 has two prime factors of form, namely 17=2n+1, 193=24n+1. Thus a(8)=2.


MATHEMATICA

m = 3; n = 2; nmax = 130;
While[n <= nmax, {l = FactorInteger[m^n + 1]; s = 0;
For[i = 1, i <= Length[l],
i++, {p = l[[i, 1]];
If[IntegerQ[(p  1)/n] == True, s = s + l[[i, 2]]]; }];
a[n] = s; } n++; ];
Table[a[n], {n, 2, nmax}]
Table[{p, e}=Transpose[FactorInteger[3^n+1]]; Sum[If[Mod[p[[i]], n] == 1, e[[i]], 0], {i, Length[p]}], {n, 2, 50}]


CROSSREFS

Sequence in context: A097456 A164002 A322156 * A087775 A089955 A180312
Adjacent sequences: A182593 A182594 A182595 * A182597 A182598 A182599


KEYWORD

nonn


AUTHOR

Seppo Mustonen, Nov 24 2010


STATUS

approved



