login
A182586
a(n) is the unique nonnegative integer m such that the Grundy function of the position [n,m] for the Wythoff game evaluates to 1.
0
0, 2, 6, 8, 7, 3, 5, 4, 14, 16, 19, 21, 20, 9, 25, 10, 29, 31, 11, 13, 12, 33, 37, 40, 15, 41, 45, 47, 17, 50, 18, 49, 22, 55, 58, 60, 23, 63, 61, 24, 26, 69, 71, 70, 27, 76, 28, 77, 32, 30, 82, 84, 87, 89, 34, 92, 90, 35, 97, 36, 39, 99, 38, 103, 105, 108, 110, 109
OFFSET
1,2
MAPLE
mex:=proc(S) local s:
for s from 0 while member(s, S) do od:
s:
end:
GW:=proc(a, b) local i:
option remember:
mex({seq( GW(a-i, b), i=1..a), seq(GW(a, b-i), i=1..b),
seq(GW(a-i, b-i), i=1..min(a, b))}):
end:
W1:=proc(i) local b:
for b from 0 while GW(i, b)<>1 do od:
b:
end:
#W1seq(N): list L of length N such that [i, L[i]] is the
#unique position with grundy function value 1.
W1seq:=proc(N) local i:
[seq(W1(i), i=1..N)]:
end:
CROSSREFS
Sequence in context: A278081 A329592 A154970 * A011224 A272097 A236676
KEYWORD
nonn
AUTHOR
John Y. Kim, May 06 2012
STATUS
approved