This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A182562 Number of ways to place k non-attacking semi-knights on an n x n chessboard, sum over all k>=0 2
 2, 16, 288, 11664, 1458000, 506250000, 414720000000, 869730877440000, 5045702916833280000, 77297454895962562560000, 3017525202366485003182080000, 307389127582207654481154908160000, 83016370640108703579427655610531840000, 58770343311359208383258439665073059266560000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Semi-knight is a semi-leaper [1,2]. Moves of a semi-knight are allowed only in [2,1] and [-2,-1]. See also semi-bishops (A187235). LINKS Vaclav Kotesovec, Table of n, a(n) for n = 1..60 V. Kotesovec, Non-attacking chess pieces FORMULA a(n) = F(n/2+2)^(n+2)*prod(j=1,n/2-1,F(j+2)^4) if n is even, F((n+1)/2+2)^((n+1)/2)*F((n-1)/2+2)^((n-1)/2)*prod(j=1,(n-1)/2,F(j+2)^4) if n is odd, where F(n) = A000045(n) is the n-th Fibonacci number. a(n) is asymptotic to C^4*((1+sqrt(5))/2)^((n+2)*(n+4))/5^(3/2*(n+2)), where C=1.226742010720353244... is Fibonacci Factorial Constant, see A062073. MATHEMATICA Table[If[EvenQ[n], Fibonacci[n/2+2]^(n+2)*Product[Fibonacci[j+2]^4, {j, 1, n/2-1}], Fibonacci[(n+1)/2+2]^((n+1)/2)*Fibonacci[(n-1)/2+2]^((n-1)/2)*Product[Fibonacci[j+2]^4, {j, 1, (n-1)/2}]], {n, 1, 20}] CROSSREFS Cf. A067962, A067966, A063443, A006506, A067965, A066864, A067963, A067964, A182563 Sequence in context: A009549 A254744 A009795 * A112722 A223664 A189611 Adjacent sequences:  A182559 A182560 A182561 * A182563 A182564 A182565 KEYWORD nonn AUTHOR Vaclav Kotesovec, May 05 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 20 18:08 EDT 2018. Contains 316401 sequences. (Running on oeis4.)