login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A182560 a(n) = (a(n-1) AND a(n-2)) XOR n. 3
0, 1, 2, 3, 6, 7, 0, 7, 8, 9, 2, 11, 14, 7, 8, 15, 24, 25, 10, 27, 30, 15, 24, 31, 0, 25, 26, 3, 30, 31, 0, 31, 32, 33, 2, 35, 38, 7, 32, 39, 8, 41, 34, 11, 46, 39, 8, 47, 56, 25, 42, 59, 30, 47, 56, 31, 32, 57, 26, 35, 62, 31, 32, 63, 96, 97, 34, 99, 102, 39, 96, 103 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Conjecture: sequence contains infinitely many zeros.

a(6*A000695(n)) = 0. [Reinhard Zumkeller, May 05 2012]

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 0..10000

Eric Weisstein's World of Mathematics, AND

Eric Weisstein's World of Mathematics, XOR

Wikipedia, Bitwise operation AND

Wikipedia, Bitwise operation XOR

FORMULA

a(0)=0, a(1)=1, a(n) = (a(n-1) AND a(n-2)) XOR n, where AND is the bitwise AND operator, XOR is the bitwise exclusive-or operator.

PROG

(Python)

prpr = 0

prev = 1

for n in range(2, 55):

.  current = (prev & prpr) ^ n

.  print prpr,

.  prpr = prev

.  prev = current

(Haskell)

import Data.Bits ((.&.), xor)

a182560 n = a182560_list !! n

a182560_list = 0 : 1 : 2 : zipWith xor [3..]

   (tail $ zipWith (.&.) a182560_list $ tail a182560_list) :: [Integer]

-- Reinhard Zumkeller, May 05 2012

CROSSREFS

Cf. A182389, A182538.

Sequence in context: A015698 A068587 A218954 * A001058 A114462 A169746

Adjacent sequences:  A182557 A182558 A182559 * A182561 A182562 A182563

KEYWORD

nonn,base,easy

AUTHOR

Alex Ratushnyak, May 05 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified January 20 02:42 EST 2018. Contains 297939 sequences.