login
A182543
Penultimate diagonal of triangle in A145879.
2
5, 8, 26, 112, 596, 3768, 27576, 229248, 2133792, 21983040, 248345280, 3052719360, 40563521280, 579385336320, 8852682585600, 144083913523200, 2488656760934400, 45465350973235200, 875935041046732800, 17749186274340864000, 377355425576693760000
OFFSET
3,1
LINKS
FORMULA
Recurrence (for n>=6): (n-5)*a(n) = (2*n^2 - 15*n + 26)*a(n-1) - (n-4)^2*(n-3)*a(n-2). - Vaclav Kotesovec, Sep 02 2014
a(n) ~ 2 * n! * (log(n) + gamma) / n^2, where gamma is the Euler-Mascheroni constant (A001620). - Vaclav Kotesovec, Sep 02 2014
MATHEMATICA
Flatten[{5, 8, 26, RecurrenceTable[{-(-4+n)^2 (-3+n) a[-2+n]+(26-15 n+2 n^2) a[-1+n]+(5-n) a[n]==0, a[6]==112, a[7]==596}, a, {n, 6, 25}]}] (* Vaclav Kotesovec, Sep 02 2014 *)
CROSSREFS
Cf. A145879.
Sequence in context: A112577 A192920 A162562 * A026539 A126700 A076593
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, May 04 2012
EXTENSIONS
More terms from Alois P. Heinz, May 30 2012
STATUS
approved