login
A182540
Number of ways of arranging the numbers 1 through n on a circle so that no sum of two adjacent numbers is prime, up to rotations and reflections.
1
0, 0, 0, 0, 0, 1, 6, 44, 208, 912, 8016, 61952, 671248, 8160620, 87412258, 888954284, 12156253488, 180955852060, 2907927356451, 50317255621843, 802326797235038, 12251146829850324, 233309934271940028, 4243527581615332664, 79533825261873435894, 1602629887788636447221, 30450585799991840921483, 622433536382831426225696, 14891218890120375419560713, 344515231090957672408413959
OFFSET
1,7
EXAMPLE
If n < 6, then in every arrangement of the numbers 1 through n on a circle, there are two adjacent numbers adding up to a prime. For n = 6, the only arrangement without a prime sum is (1, 3, 6, 2, 4, 5).
CROSSREFS
KEYWORD
nonn
AUTHOR
Jens Voß, May 04 2012
EXTENSIONS
a(15)-a(17) from Alois P. Heinz, May 04 2012
a(18) from R. H. Hardin, May 07 2012
a(19)-a(30) from Max Alekseyev, Aug 19 2013
STATUS
approved