login
A182538
a(n) = (a(n-1) AND a(n-2)) + n.
2
0, 1, 2, 3, 6, 7, 12, 11, 16, 9, 10, 19, 14, 15, 28, 27, 40, 25, 26, 43, 30, 31, 52, 43, 56, 65, 26, 27, 54, 47, 68, 35, 32, 65, 34, 35, 70, 39, 44, 75, 48, 41, 74, 51, 46, 79, 60, 59, 104, 89, 122, 139, 62, 63, 116, 107, 152, 65, 58, 59, 118, 111, 164, 99, 96, 161, 98, 99, 166, 103
OFFSET
0,3
FORMULA
a(0)=0, a(1)=1, a(n)=(a(n-1) AND a(n-2)) + n, where AND is the bitwise AND operator.
PROG
(Python)
prpr, prev = 0, 1
for n in range(2, 99):
. current = (prpr & prev) + n
. print prpr,
. prpr, prev = prev, current
(PARI) first(n)=my(res=vector(n, i, i-1)); for(x=3, n, res[x]=bitand(res[x-1], res[x-2])+x-1); res \\ Iain Fox, Nov 05 2018
CROSSREFS
Cf. A182536.
Sequence in context: A023773 A115889 A101319 * A030013 A130404 A362009
KEYWORD
nonn,base,look,easy
AUTHOR
Alex Ratushnyak, May 04 2012
STATUS
approved