This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A182518 Carmichael numbers of the form C = p*(2p-1)*(3p-2)*(6p-5), where p is prime. 1
 63973, 31146661, 703995733, 21595159873, 192739365541, 461574735553, 3976486324993, 10028704049893, 84154807001953, 197531244744661, 741700610203861, 973694665856161, 2001111155103061, 3060522900274753, 3183276534603733, 4271903575869601 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS We get Carmichael numbers with four prime divisors for p = 7, 271, 337, 727, 1237, 1531, 2281, 3037, 3067. We get Carmichael numbers with more than four prime divisors for p = 31, 67, 157, 577, 2131, 2731, 3301. Note: we can see that p, 2p-1, 3p-2 and 6p-5 can all four be primes only for p = 6k+1 (for p = 6k+5, we get 2p-1 divisible by 3), so in that case the formula is equivalent to C = (6k+1)(12k+1)(18k+1)(36k+1). LINKS Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 E. W. Weisstein, Carmichael Number PROG (PARI) search(lim)={     my(v=List(), n, f);     forprime(p=7, lim,         n=p*(2*p-1)*(3*p-2)*(6*p-5)-1;         if(n%(p-1), next);         f=factor(2*p-1);         for(i=1, #f[, 1], if(f[i, 2]>1 || n%(f[i, 1]-1), next(2)));         f=factor(3*p-2);         for(i=1, #f[, 1], if(f[i, 2]>1 || n%(f[i, 1]-1), next(2)));         f=factor(6*p-5);         for(i=1, #f[, 1], if(f[i, 2]>1 || n%(f[i, 1]-1), next(2)));         listput(v, n+1)     );     Vec(v) }; \\ Charles R Greathouse IV, Oct 02 2012 CROSSREFS Sequence in context: A145437 A214758 A212882 * A182089 A217126 A054738 Adjacent sequences:  A182515 A182516 A182517 * A182519 A182520 A182521 KEYWORD nonn AUTHOR Marius Coman, May 03 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .