login
A182468
Numbers k such that the equation x^2 - k*y^4 = 1 has a solution for which |y| > 2.
1
20, 63, 65, 79, 83, 156, 183, 254, 258, 285, 320, 323, 325, 328, 505, 573, 579, 600, 623, 627, 723, 735, 791, 994, 1020, 1023, 1025
OFFSET
1,1
REFERENCES
Williams, H. C. and Zarnke, C. R., Computation of the solutions of the Diophantine equation x^2-dy^4=1. Proceedings of the Third Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1972), pp. 463-483. Florida Atlantic Univ., Boca Raton, Fla., 1972.
LINKS
Pierre Samuel, Résultats élémentaires sur certaines équations diophantiennes, Journal de Théorie des Nombres de Bordeaux, Tome 14 (2002) no. 2, pp. 629-646.
CROSSREFS
Sequence in context: A007248 A117431 A159504 * A117432 A033577 A262486
KEYWORD
nonn,more
AUTHOR
N. J. A. Sloane, Apr 30 2012
EXTENSIONS
Duplicate term 723 removed by Georg Fischer, Mar 19 2022
a(1) corrected by Jinyuan Wang, Aug 09 2022
STATUS
approved