%I #23 Oct 23 2023 08:35:42
%S 1,2,13,20,46,157,236,532,1198,4045,6068,13654,46084,103690,1181101,
%T 1771652,3986218,102162424,229865455,344798183,517197275,775795913,
%U 1163693870,3927466813,5891200220,13255200496,29824201117,44736301676,100656678772,226477527238
%N a(n) is the number of initial persons such that the n-th person survives in the duck-duck-goose game.
%C In more detail: k students are sitting in a circle. A professor starts tagging them in the pattern - duck, duck, goose, ... . If a student is tagged goose he or she leaves the circle immediately. The last remaining student is the winner. These are the numbers k of initial students such that the n-th student will be the winner.
%H Yunier Bello Cruz and Roy Quintero-Contreras, <a href="https://arxiv.org/abs/2310.12984">On the Recurrence Formula for Fixed Points of the Josephus Function</a>, arXiv:2310.12984 [math.CO], 2023. See Table 1 p. 5.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/JosephusProblem.html">Josephus Problem</a>
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Josephus_problem">Josephus problem</a>
%H <a href="/index/J#Josephus">Index entries for sequences related to the Josephus Problem</a>
%F a(n) = A081615(n)-1.
%K nonn
%O 1,2
%A _Dan Fodor_, Apr 30 2012
%E Name corrected by _Hugo Pfoertner_, Oct 23 2023