|
0, 2, 0, 1, 1, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 3, 0, 1, 0, 3, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 1, 2, 0, 0, 0, 1, 0, 2, 1, 2, 0, 0, 0, 1, 0, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Theorem. If the sequence is unbounded, then there exist arbitrarily long sequences of consecutive primes p_k, p_(k+1),...,p_m such that every interval (p_i/2, p_(i+1)/2), i=k,k+1,...,m-1, contains a prime.
|
|
LINKS
|
Table of n, a(n) for n=1..83.
V. Shevelev, Ramanujan and Labos primes, their generalizations, and classifications of primes, J. Integer Seq. 15 (2012) Article 12.5.4.
|
|
CROSSREFS
|
Cf. A164368, A194598, A182405, A166251, A182426.
Sequence in context: A050870 A103306 A269249 * A163510 A124735 A064874
Adjacent sequences: A182420 A182421 A182422 * A182424 A182425 A182426
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Vladimir Shevelev, Apr 28 2012
|
|
STATUS
|
approved
|
|