This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A182401 Number of paths from (0,0) to (n,0), never going below the x-axis, using steps U=(1,1), H=(1,0) and D=(1,-1), where the H steps come in five colors. 3
 1, 5, 26, 140, 777, 4425, 25755, 152675, 919139, 5606255, 34578292, 215322310, 1351978807, 8550394455, 54419811354, 348309105300, 2240486766555, 14476490777175, 93914850905862, 611489638708140, 3994697746533171, 26175407271617955, 171991872078871311 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Number of 3-colored Schroeder paths from (0,0) to (2n+2,0) with no level steps H=(2,0) at even level. H-steps at odd levels are  colored with one of the three colors. Example: a(2)=5 because we have UUDD, UHD (3 choices) and UDUD. - José Luis Ramírez Ramírez, Apr 27 2015 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 FORMULA a(n) = [x^n] (1+5*x+x^2)^(n+1)/(n+1). a(n) = sum(binomial(n,2*k)*binomial(2*k,k)/(k+1)*5^(n-2*k),k=0..n/2). G.f. (1-5*x-sqrt(1-10*x+21*x^2))/(2*x^2). Conjecture: (n+2)*a(n) +5*(-2*n-1)*a(n-1) +21*(n-1)*a(n-2)=0. - R. J. Mathar, Jul 24 2012 a(n) ~ 7^(n+3/2)/(2*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 20 2012 a(n) = A125906(n,0). - Philippe Deléham, Mar 04 2013 G.f.: 1/(1 - 5*x - x^2/(1 - 5*x - x^2/(1 - 5*x - x^2/(1 - 5*x - x^2/(1 - ...))))), a continued fraction. - Ilya Gutkovskiy, Sep 21 2017 MATHEMATICA CoefficientList[Series[(1-5*x-Sqrt[1-10*x+21*x^2])/(2*x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *) a[n_] := 5^n*Hypergeometric2F1[(1-n)/2, -n/2, 2, 4/25]; Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Feb 22 2013, after 2nd formula *) PROG (Maxima) a(n):=coeff(expand((1+5*x+x^2)^(n+1)), x^n)/(n+1); makelist(a(n), n, 0, 30); (PARI) x='x+O('x^66); Vec((1-5*x-sqrt(1-10*x+21*x^2))/(2*x^2)) \\ Joerg Arndt, Jun 02 2013 CROSSREFS Cf. A002212, A005572, A257290 Sequence in context: A005573 A081911 A081187 * A104498 A045379 A053487 Adjacent sequences:  A182398 A182399 A182400 * A182402 A182403 A182404 KEYWORD nonn AUTHOR Emanuele Munarini, Apr 27 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 16 10:31 EDT 2018. Contains 313805 sequences. (Running on oeis4.)