login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. A(x) satisfies: A(A(x)) - A(A(x))^2 = x + x^2.
3

%I #33 Aug 22 2021 13:32:15

%S 1,1,1,3,7,21,61,187,583,1837,5885,19027,62167,204917,680621,2275211,

%T 7648519,25852573,87812093,299349795,1023570647,3515918501,

%U 12140103149,41894710427,143835281351,501071173901,1808088546557,6212411239539,17720665594455

%N G.f. A(x) satisfies: A(A(x)) - A(A(x))^2 = x + x^2.

%C a(33) is the first negative term.

%C If B(x) = x + 2*x^2 + 8*x^3 + 36*x^4 + 160*x^5 + 736*x^6 + 3648*x^7 + ..., then g.f. A(x) = x + B(x * A(x)). - _Michael Somos_, Jun 27 2017

%H Paul D. Hanna, <a href="/A182399/b182399.txt">Table of n, a(n) for n = 1..256</a>

%F G.f. satisfies: A(-A(-x)) = x.

%F G.f. satisfies: A(A(x)) = (1 - sqrt(1-4*(x+x^2)))/2 is the g.f. of A025227; thus, A(A(x)) = C(x+x^2) where C(x-x^2) = x.

%F G.f. satisfies: A(-C(-x)) = -I*G(I*x) where C(x-x^2) = x and G(x) is the g.f. of A179270 such that the inverse of function G(x) + I*G(x)^2 equals the complex conjugate: G(x) - I*G(x)^2.

%F a(n) = T(n,1), with T(n, m) = (sum((binomial(k+m,n-k-m)*binomial(2*k+m-1,k+m-1))/(k+m),k,0,n-m)*m -sum(T(n, i) *T(i, m), i, m+1, n-1))/2, n>m, T(n,n) = 1. - _Vladimir Kruchinin_, Apr 28 2012

%e G.f.: A(x) = x + x^2 + x^3 + 3*x^4 + 7*x^5 + 21*x^6 + 61*x^7 + 187*x^8 +...

%e Related expansions:

%e A(A(x)) = x + 2*x^2 + 4*x^3 + 12*x^4 + 40*x^5 + 144*x^6 + 544*x^7 + 2128*x^8 +...

%e A(A(x))^2 = x^2 + 4*x^3 + 12*x^4 + 40*x^5 + 144*x^6 + 544*x^7 + 2128*x^8 +...

%e where A(A(x)) - A(A(x))^2 = x + x^2.

%e Let C(x) satisfy C(x-x^2) = x, where C(x) begins:

%e C(x) = x + x^2 + 2*x^3 + 5*x^4 + 14*x^5 + 42*x^6 +...+ A000108(n-1)*x^n +...

%e then

%e A(-C(-x)) = x + x^3 + 4*x^5 + 21*x^7 + 122*x^9 + 758*x^11 + 4958*x^13 +...+ (-1)^(n-1)*A179270(2*n-1)*x^(2*n-1) +...

%o (PARI) {a(n)=local(A=x+x^2,G);for(i=1,n,G=subst(A,x,A+x*O(x^n));A=A+(x+x^2-G+G^2)/2);polcoeff(A,n)}

%o for(n=1,30,print1(a(n),", "))

%o (PARI) /* Faster vectorized version: */

%o {MM=100;A=[1];B=x;C=(1-sqrt(1-4*(x+x^2+x*O(x^MM))))/2; for(n=1,oo,A=concat(A,0);B=x*Ser(A); A[n]=Vec((B+subst(C+x*O(x^n),x,serreverse(B)))/2)[n]; print1(A[n],", "))}

%o (PARI) /* PARI/GP Version of Vladimir Kruchinin's formula: */

%o {T(n, m)=if(n==m,1, if(n>m, (sum(k=0,n-m,(binomial(k+m,n-k-m)*binomial(2*k+m-1,k+m-1))/(k+m))*m - sum(i=m+1,n-1,T(n, i) *T(i, m)))/2 ))}

%o {a(n)=T(n,1)}

%o (Maxima) T(n, m):= if n=m then 1 else ((sum((binomial(k+m,n-k-m)*binomial(2*k+m-1,k+m-1))/(k+m),k,0,n-m))*m -sum(T(n, i) *T(i, m), i, m+1, n-1))/2;

%o makelist(T(n, 1), n, 1, 10); /* _Vladimir Kruchinin_, Apr 28 2012 */

%Y Cf. A025227, A179270, A000108.

%K sign

%O 1,4

%A _Paul D. Hanna_, Apr 27 2012