This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A182312 Primes of the form a^2 + b^2 such that both a^2 + b^2 - a*b and a^2 + b^2 + a*b are prime. 2
 5, 13, 37, 109, 193, 421, 457, 541, 613, 709, 757, 1033, 1117, 1201, 1549, 1597, 1621, 1789, 2137, 2293, 2377, 2437, 2797, 3061, 3109, 3313, 3361, 3469, 4153, 4621, 4657, 4729, 5077, 5233, 5569, 5653, 6421, 6469, 6637, 6997, 7417, 7561, 7681, 7753, 8101, 8689 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 FORMULA a(n) == 1 (mod 4). - Thomas Ordowski, Mar 13 2018 EXAMPLE The prime 13 = 2^2 + 3^2 is a term, since 13 - 2*3 = 7 is prime and 13 + 2*3 = 19 is prime. MATHEMATICA prsQ[{a_, b_}]:=Module[{c=a^2+b^2, d=a*b}, And@@PrimeQ[c+{0, d, -d}]]; Sort[#[[1]]^2+#[[2]]^2&/@Select[Subsets[Range[100], {2}], prsQ]] (* Harvey P. Dale, Apr 27 2014 *) PROG (PARI) list(lim)=my(v=List(), t); for(a=1, sqrt(lim), forstep(b=1+a%2, min(a, sqrt(lim-a^2)), 2, if(isprime(t=a^2+b^2) && isprime(t-a*b) && isprime(t+a*b), listput(v, t)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Apr 25 2012 CROSSREFS Subsequence of A002313. Cf. A007645. Sequence in context: A298417 A193642 A220709 * A071100 A199108 A125734 Adjacent sequences:  A182309 A182310 A182311 * A182313 A182314 A182315 KEYWORD nonn AUTHOR Thomas Ordowski, Apr 24 2012 EXTENSIONS a(6)-a(46) from Charles R Greathouse IV, Apr 25 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 15 11:43 EST 2019. Contains 329999 sequences. (Running on oeis4.)