OFFSET
2,2
COMMENTS
Triangle T(n,k) captures several well known sequences. In particular, T(n,2)=(n-1), the natural numbers; T(n,3)=(n-2)(n-3)=A002378(n-3), the "oblong" numbers; T(n,4)=(n-3)(n-4)^2/2=A002411(n-4), "pentagonal pyramidal" numbers; and also T(n,5)=(n-4)C(n-4,3)=A004320(n-6). Furthermore, row sums=A000100(n+1).
LINKS
FORMULA
T(n,k) = Sum_{j=1..k/2} binomial(n-k+1,j)*binomial(n-k-j+1,k-2j) for 2 <= k <= 2(n+1)/3.
EXAMPLE
For n=6 and k=3, T(6,3)=12 since there are 12 binary sequences of length 6 that contain 3 zeros and that have a maximum run of zeros of length 2, namely, 011100, 101100, 110100, 011001, 101001, 110010, 010011, 100110, 100101, 001110, 001101, and 001011.
Triangle T(n,k) begins
1,
2,
3, 2,
4, 6, 1,
5, 12, 6,
6, 20, 18, 3,
7, 30, 40, 16, 1,
8, 42, 75, 50, 10,
9, 56, 126, 120, 45, 4,
10, 72, 196, 245, 140, 30, 1,
11, 90, 288, 448, 350, 126, 15,
12, 110, 405, 756, 756, 392, 90, 5,
13, 132, 550, 1200, 1470, 1008, 357, 50, 1,
14, 156, 726, 1815, 2640, 2268, 1106, 266, 21,
15, 182, 936, 2640, 4455, 4620, 2898, 1016, 161, 6,
MAPLE
seq(seq(sum(binomial(n-k+1, j)*binomial(n-k+1-j, k-2*j), j=1..floor(k/2)), k=2..floor(2*(n+1)/3)), n=2..20);
MATHEMATICA
t[n_, k_] := Sum[ Binomial[n-k+1, j]*Binomial[n-k-j+1, k-2*j], {j, 1, k/2}]; Table[t[n, k], {n, 2, 15}, {k, 2, 2*(n+1)/3}] // Flatten (* Jean-François Alcover, Jun 06 2013 *)
CROSSREFS
KEYWORD
nonn,nice,easy,tabf
AUTHOR
Dennis P. Walsh, Apr 23 2012
STATUS
approved