%I #15 Feb 16 2021 02:07:15
%S 509203,1330207,2251349,2554843,2924861,3177553,3292241,3580901,
%T 3661529,3661543,4384979,6055001,7576559,7629217,8086751,8643209,
%U 9053711,9203917,9545351,10219379,10645867,10913233,10913681,11694013,11942443,13161283,14608183,15627133
%N Prime Riesel numbers: primes p such that p*2^k - 1 is composite for all positive integers k.
%C Primes in A101036.
%H Arkadiusz Wesolowski, <a href="/A182296/b182296.txt">Table of n, a(n) for n = 1..3701</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RieselNumber.html">Riesel Number</a>
%e 509203 is the first known prime p for which p*2^k - 1 is composite for all positive integers k, so a(1) = 509203.
%Y Cf. A101036, A101050.
%K nonn
%O 1,1
%A _Arkadiusz Wesolowski_, Apr 23 2012