This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A182291 Number of bases in which 2n+1 is a strong pseudoprime. 0
 2, 4, 6, 2, 10, 12, 2, 16, 18, 2, 22, 4, 2, 28, 30, 2, 2, 36, 2, 40, 42, 2, 46, 6, 2, 52, 2, 2, 58, 60, 2, 6, 66, 2, 70, 72, 2, 2, 78, 2, 82, 6, 2, 88, 18, 2, 2, 96, 2, 100, 102, 2, 106, 108, 2, 112, 2, 2, 2, 10 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The subsequence related to composite 2n+1 is characterized with records in A195328 and associated 2n+1 tabulated in A141768. Let N = 2n+1 = product_{i=1..s} p_i^r_i be the prime factorization of the odd 2n+1. Related odd parts q and q_i are defined by N-1=2^k*q and p_i-1 = 2^(k_i)*q_i, with sorting such that k_1 <= k_2 <=k_3... Then a(n) = (1+sum_{j=0..k1-1} 2^(j*s)) *product_{i=1..s} gcd(q,qi). Reduces to A006093 if 2n+1 is prime. This might be correlated with 2*A195508(n). LINKS F. Arnault, The Rabin-Monier theorem for Lucas pseudoprimes, Mathematics of Computation, vol. 66, no 218, April 1997, pp. 869-881. MAPLE A000265 := proc(n)         n/2^padic[ordp](n, 2) ; end proc: a := proc(n)         q := A000265(n-1) ;         B := 1;         s := 0 ;         k1 := 10000000000000 ;         for pf in ifactors(n)[2] do                 pi := op(1, pf) ;                 qi := A000265(pi-1) ;                 ki := ilog2((pi-1)/qi) ;                 k1 := min(k1, ki) ;                 B := B*igcd(q, qi) ;                 s := s+1 ;         end do:         1+add(2^(j*s), j=0..k1-1) ;         return B*% ; end proc: seq(a(2*n+1), n=1..60) ; CROSSREFS Sequence in context: A094752 A214061 A260300 * A071294 A060684 A056134 Adjacent sequences:  A182288 A182289 A182290 * A182292 A182293 A182294 KEYWORD nonn AUTHOR R. J. Mathar, Jul 03 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.