login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A182267 G.f. satisfies: A(x) = (1+x*A(x))*(1+x^2*A(x)^2)*(1+x^3*A(x)). 1
1, 1, 2, 6, 16, 46, 140, 435, 1382, 4474, 14687, 48787, 163703, 554009, 1888794, 6481220, 22366415, 77575617, 270277602, 945480612, 3319582632, 11693824752, 41318554495, 146399071577, 520042511448, 1851657641932, 6607352892709, 23624965371264 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..400

FORMULA

a(n) ~ sqrt(s*(1 + 2*r*s + 4*r^3*s + 5*r^4*s^2 + 6*r^5*s^3 + 3*r^2*(1 + s^2)) / (Pi*(1 + r^2 + 3*r*s + 3*r^3*s + 6*r^4*s^2))) / (2 * n^(3/2) * r^(n + 1/2)), where r = 0.2649675733882333627400730579639429790476557486165... and s = 2.383929237709193665917448862090331200952809331679... are roots of the system of equations (1 + r*s)*(1 + r^3*s)*(1 + r^2*s^2) = s, r*(1 + r^2 + 2*r*s + 2*r^3*s + 3*r^2*s^2 + 3*r^4*s^2 + 4*r^5*s^3) = 1. - Vaclav Kotesovec, Nov 18 2017

EXAMPLE

G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 16*x^4 + 46*x^5 + 140*x^6 + 435*x^7 +...

Related expansions:

A(x)^2 = 1 + 2*x + 5*x^2 + 16*x^3 + 48*x^4 + 148*x^5 + 472*x^6 +...

A(x)^3 = 1 + 3*x + 9*x^2 + 31*x^3 + 102*x^4 + 336*x^5 + 1124*x^6 +...

A(x)^4 = 1 + 4*x + 14*x^2 + 52*x^3 + 185*x^4 + 648*x^5 + 2272*x^6 +...

where A(x) = 1 + x*A(x) + x^2*A(x)^2 + x^3*(A(x) + A(x)^3) + x^4*A(x)^2 + x^5*A(x)^3 + x^6*A(x)^4.

PROG

(PARI) {a(n)=local(A=1+x); for(i=1, n, A=(1+x*A)*(1+x^2*A^2)*(1+x^3*A)+x*O(x^n)); polcoeff(A, n)}

for(n=0, 40, print1(a(n), ", "))

CROSSREFS

Cf. A182053, A211854, A211855.

Sequence in context: A092687 A094039 A165431 * A003291 A148442 A190729

Adjacent sequences:  A182264 A182265 A182266 * A182268 A182269 A182270

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Apr 22 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 19 00:03 EDT 2019. Contains 321305 sequences. (Running on oeis4.)