|
|
A182256
|
|
a(n) = 2^n - 2*n*A000048(n).
|
|
1
|
|
|
1, 0, 0, 2, 0, 2, 4, 2, 0, 8, 4, 2, 16, 2, 4, 38, 0, 2, 64, 2, 16, 134, 4, 2, 256, 32, 4, 512, 16, 2, 1084, 2, 0, 2054, 4, 158, 4096, 2, 4, 8198, 256, 2, 16444, 2, 16, 33272, 4, 2, 65536, 128, 1024, 131078, 16, 2, 262144, 2078, 256, 524294, 4, 2, 1052656, 2, 4, 2097656, 0, 8222, 4194364, 2, 16, 8388614, 17404, 2, 16777216, 2, 4, 33587168, 16, 2174, 67108924
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
COMMENTS
|
a(n) = total length of all cycles (see A000048) which are strictly less than the full length of 2n.
|
|
REFERENCES
|
R. K. Guy, Posting to Sequence Fans Mailing List, Apr 20 2012
|
|
LINKS
|
Alois P. Heinz, Table of n, a(n) for n = 0..2000
|
|
MAPLE
|
with (numtheory):
a:= n-> 2^n -add (mobius(d)*2^(n/d), d=select(x->is(x, odd), divisors(n))):
seq (a(n), n=0..80); # Alois P. Heinz, Apr 21 2012
|
|
MATHEMATICA
|
a[n_] := 2^n - DivisorSum[n, Mod[#, 2]*MoebiusMu[#]*2^(n/#)&]; a[0] = 1;
Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Mar 27 2017 *)
|
|
CROSSREFS
|
Cf. A000048.
Sequence in context: A037036 A055947 A015910 * A164993 A305572 A223487
Adjacent sequences: A182253 A182254 A182255 * A182257 A182258 A182259
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
N. J. A. Sloane, Apr 21 2012
|
|
STATUS
|
approved
|
|
|
|