login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A182230 a(n) = a(n-1)+floor(a(n-2)/4) with a(0)=3, a(1)=4. 4
3, 4, 4, 5, 6, 7, 8, 9, 11, 13, 15, 18, 21, 25, 30, 36, 43, 52, 62, 75, 90, 108, 130, 157, 189, 228, 275, 332, 400, 483, 583, 703, 848, 1023, 1235, 1490, 1798, 2170, 2619, 3161, 3815, 4605, 5558, 6709, 8098, 9775, 11799, 14242, 17191, 20751, 25048, 30235 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

a(n)/a(n-1) tends to (1+sqrt(2))/2 = 1.207106781186547524... [Bruno Berselli, Apr 23 2012]

LINKS

Bruno Berselli, Table of n, a(n) for n = 0..1000

MAPLE

a:= proc(n) a(n):= a(n-1) +floor(a(n-2)/4) end: a(0), a(1):= 3, 4:

seq(a(n), n=0..60);  # Alois P. Heinz, Apr 20 2012

MATHEMATICA

RecurrenceTable[{a[0] == 3, a[1] == 4, a[n] == a[n - 1] + Floor[a[n - 2]/4]}, a, {n, 51}] (* Bruno Berselli, Apr 21 2012 *)

PROG

(Python)

prpr = 3

prev = 4

for i in range(2, 55):

. current = prev + prpr/4

. print current,

. prpr = prev

. prev = current

(MAGMA) [n le 2 select n+2 else Self(n-1)+Floor(Self(n-2)/4): n in [1..52]]; // Bruno Berselli, Apr 20 2012

(Haskell)

a182230 n = a182230_list !! n

a182230_list = 3 : 4 : zipWith (+)

                       (map (flip div 4) a182230_list) (tail a182230_list)

-- Reinhard Zumkeller, Apr 30 2015

CROSSREFS

Cf. A064323, A064324, A182229, A182280; A174968.

Sequence in context: A288178 A023963 A121500 * A113455 A054637 A120172

Adjacent sequences:  A182227 A182228 A182229 * A182231 A182232 A182233

KEYWORD

nonn

AUTHOR

Alex Ratushnyak, Apr 19 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 13 02:09 EDT 2020. Contains 336441 sequences. (Running on oeis4.)