login
A182229
a(n) = a(n-1) + floor(a(n-2)/3) with a(0)=2, a(1)=3.
4
2, 3, 3, 4, 5, 6, 7, 9, 11, 14, 17, 21, 26, 33, 41, 52, 65, 82, 103, 130, 164, 207, 261, 330, 417, 527, 666, 841, 1063, 1343, 1697, 2144, 2709, 3423, 4326, 5467, 6909, 8731, 11034, 13944, 17622, 22270, 28144, 35567, 44948, 56803, 71785, 90719, 114647, 144886, 183101
OFFSET
0,1
COMMENTS
a(n)/a(n-1) tends to (3+sqrt(21))/6 = 1.263762615825973334... [Bruno Berselli, Apr 23 2012]
LINKS
MATHEMATICA
RecurrenceTable[{a[0] == 2, a[1] == 3, a[n] == a[n - 1] + Floor[a[n - 2]/3]}, a, {n, 50}] (* Bruno Berselli, Apr 21 2012 *)
PROG
(Python)
prpr = 2
prev = 3
for i in range(2, 51):
current = prev + prpr//3
print(current, end=', ')
prpr = prev
prev = current
(Magma) [n le 2 select n+1 else Self(n-1)+Floor(Self(n-2)/3): n in [1..51]]; // Bruno Berselli, Apr 21 2012
(Haskell)
a182229 n = a182229_list !! n
a182229_list = 2 : 3 : zipWith (+)
(map (flip div 3) a182229_list) (tail a182229_list)
-- Reinhard Zumkeller, Apr 30 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Alex Ratushnyak, Apr 19 2012
STATUS
approved