login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A182222 Number T(n,k) of standard Young tableaux of n cells and height >= k; triangle T(n,k), n>=0, 0<=k<=n, read by rows. 11
1, 1, 1, 2, 2, 1, 4, 4, 3, 1, 10, 10, 9, 4, 1, 26, 26, 25, 16, 5, 1, 76, 76, 75, 56, 25, 6, 1, 232, 232, 231, 197, 105, 36, 7, 1, 764, 764, 763, 694, 441, 176, 49, 8, 1, 2620, 2620, 2619, 2494, 1785, 856, 273, 64, 9, 1, 9496, 9496, 9495, 9244, 7308, 3952, 1506, 400, 81, 10, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Also number of self-inverse permutations in S_n with longest increasing subsequence of length >= k.  T(4,3) = 4: 1234, 1243, 1324, 2134;  T(3,0) = T(3,1) = 4: 123, 132, 213, 321;  T(5,3) = 16: 12345, 12354, 12435, 12543, 13245, 13254, 14325, 14523, 15342, 21345, 21354, 21435, 32145, 34125, 42315, 52341.

LINKS

Alois P. Heinz, Rows n = 0..50, flattened

Wikipedia, Involution (mathematics)

Wikipedia, Young tableau

FORMULA

T(n,k) = A182172(n,n) - A182172(n,k-1) for k>0, T(n,0) = A182172(n,n).

EXAMPLE

T(4,3) = 4, there are 4 standard Young tableaux of 4 cells and height >= 3:

  +---+   +------+   +------+   +------+

  | 1 |   | 1  2 |   | 1  3 |   | 1  4 |

  | 2 |   | 3 .--+   | 2 .--+   | 2 .--+

  | 3 |   | 4 |      | 4 |      | 3 |

  | 4 |   +---+      +---+      +---+

  +---+

Triangle T(n,k) begins:

    1;

    1,   1;

    2,   2,   1;

    4,   4,   3,   1;

   10,  10,   9,   4,   1;

   26,  26,  25,  16,   5,   1;

   76,  76,  75,  56,  25,   6,  1;

  232, 232, 231, 197, 105,  36,  7,  1;

  764, 764, 763, 694, 441, 176, 49,  8,  1;

MAPLE

h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j+

       add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)

    end:

g:= proc(n, i, l) option remember;

      `if`(n=0, h(l), `if`(i<1, 0, `if`(i=1, h([l[], 1$n]),

        g(n, i-1, l) +`if`(i>n, 0, g(n-i, i, [l[], i])))))

    end:

T:= (n, k)-> g(n, n, []) -`if`(k=0, 0, g(n, k-1, [])):

seq(seq(T(n, k), k=0..n), n=0..12);

MATHEMATICA

h[l_] := Module[{n = Length[l]}, Sum[i, {i, l}]! / Product[ Product[1 + l[[i]] - j + Sum [If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}] ]; g[n_, i_, l_] := g[n, i, l] = If[n == 0, h[l], If[i < 1, 0, If[i == 1, h[Join[l, Array[1&, n]]], g [n, i-1, l] + If[i > n, 0, g[n-i, i, Append[l, i]]]]]] ; t[n_, k_] := g[n, n, {}] - If[k == 0, 0, g[n, k-1, {}]]; Table[Table[t[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-Fran├žois Alcover, Dec 12 2013, translated from Maple *)

CROSSREFS

Columns 0-10 give: A000085, A000085 (for n>0), A001189, A218263, A218264, A218265, A218266, A218267, A218268, A218269, A218262.

Diagonal and lower diagonals give: A000012, A000027(n+1), A000290(n+1) for n>0, A131423(n+1) for n>1.

T(2n,n) gives A318289.

Cf. A047884, A049400, A182172.

Sequence in context: A128175 A104040 A332601 * A225639 A110664 A193922

Adjacent sequences:  A182219 A182220 A182221 * A182223 A182224 A182225

KEYWORD

nonn,tabl

AUTHOR

Alois P. Heinz, Apr 19 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 9 05:12 EDT 2020. Contains 336319 sequences. (Running on oeis4.)