The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A182222 Number T(n,k) of standard Young tableaux of n cells and height >= k; triangle T(n,k), n>=0, 0<=k<=n, read by rows. 11
 1, 1, 1, 2, 2, 1, 4, 4, 3, 1, 10, 10, 9, 4, 1, 26, 26, 25, 16, 5, 1, 76, 76, 75, 56, 25, 6, 1, 232, 232, 231, 197, 105, 36, 7, 1, 764, 764, 763, 694, 441, 176, 49, 8, 1, 2620, 2620, 2619, 2494, 1785, 856, 273, 64, 9, 1, 9496, 9496, 9495, 9244, 7308, 3952, 1506, 400, 81, 10, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Also number of self-inverse permutations in S_n with longest increasing subsequence of length >= k.  T(4,3) = 4: 1234, 1243, 1324, 2134;  T(3,0) = T(3,1) = 4: 123, 132, 213, 321;  T(5,3) = 16: 12345, 12354, 12435, 12543, 13245, 13254, 14325, 14523, 15342, 21345, 21354, 21435, 32145, 34125, 42315, 52341. LINKS Alois P. Heinz, Rows n = 0..50, flattened Wikipedia, Involution (mathematics) Wikipedia, Young tableau FORMULA T(n,k) = A182172(n,n) - A182172(n,k-1) for k>0, T(n,0) = A182172(n,n). EXAMPLE T(4,3) = 4, there are 4 standard Young tableaux of 4 cells and height >= 3:   +---+   +------+   +------+   +------+   | 1 |   | 1  2 |   | 1  3 |   | 1  4 |   | 2 |   | 3 .--+   | 2 .--+   | 2 .--+   | 3 |   | 4 |      | 4 |      | 3 |   | 4 |   +---+      +---+      +---+   +---+ Triangle T(n,k) begins:     1;     1,   1;     2,   2,   1;     4,   4,   3,   1;    10,  10,   9,   4,   1;    26,  26,  25,  16,   5,   1;    76,  76,  75,  56,  25,   6,  1;   232, 232, 231, 197, 105,  36,  7,  1;   764, 764, 763, 694, 441, 176, 49,  8,  1; MAPLE h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j+        add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)     end: g:= proc(n, i, l) option remember;       `if`(n=0, h(l), `if`(i<1, 0, `if`(i=1, h([l[], 1\$n]),         g(n, i-1, l) +`if`(i>n, 0, g(n-i, i, [l[], i])))))     end: T:= (n, k)-> g(n, n, []) -`if`(k=0, 0, g(n, k-1, [])): seq(seq(T(n, k), k=0..n), n=0..12); MATHEMATICA h[l_] := Module[{n = Length[l]}, Sum[i, {i, l}]! / Product[ Product[1 + l[[i]] - j + Sum [If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}] ]; g[n_, i_, l_] := g[n, i, l] = If[n == 0, h[l], If[i < 1, 0, If[i == 1, h[Join[l, Array[1&, n]]], g [n, i-1, l] + If[i > n, 0, g[n-i, i, Append[l, i]]]]]] ; t[n_, k_] := g[n, n, {}] - If[k == 0, 0, g[n, k-1, {}]]; Table[Table[t[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 12 2013, translated from Maple *) CROSSREFS Columns 0-10 give: A000085, A000085 (for n>0), A001189, A218263, A218264, A218265, A218266, A218267, A218268, A218269, A218262. Diagonal and lower diagonals give: A000012, A000027(n+1), A000290(n+1) for n>0, A131423(n+1) for n>1. T(2n,n) gives A318289. Cf. A047884, A049400, A182172. Sequence in context: A128175 A104040 A332601 * A225639 A110664 A193922 Adjacent sequences:  A182219 A182220 A182221 * A182223 A182224 A182225 KEYWORD nonn,tabl AUTHOR Alois P. Heinz, Apr 19 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 9 05:12 EDT 2020. Contains 336319 sequences. (Running on oeis4.)