login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A182199 Largest integer N such that a^(2^k) + b^(2^k) for 1 <= k <= N is prime, where p = a^2 + b^2 is the n-th prime of the form 4m+1. 2
4, 2, 3, 2, 2, 2, 2, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 1, 1, 2, 1, 2, 1, 2, 2, 2, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

a(1) corresponds to the first four Fermat primes. - Thomas Ordowski, Apr 22 2012

Schinzel's hypothesis H implies that there are arbitrarily large terms in the sequence. - Thomas Ordowski, Apr 26 2012

First value > 4 is a(102416) = 5 (corresponding to p = 2823521). - Robert Israel, May 28 2015

First value > 5 is a(4250044) = 6 (corresponding to p = 151062433). - Giovanni Resta, Jun 09 2015

LINKS

Charles R Greathouse IV, Table of n, a(n) for n = 1..10000

EXAMPLE

Let f(p,k) = a^(2^k)+b^(2^k), where f(p,1) = p is a prime of form 4k+1.

f(5,1) = 5, f(5,2) = 17, f(5,3) = 257, f(5,4) = 65537, f(5,5) = 641*6700417. So N = 4. Next prime of form 4k+1 is 13; N = 2. 17; N = 3. etc.

MAPLE

N:= 10^4: # to get values corresponding to primes <= N

Primes:= select(isprime, [4*i+1 $ i=1..floor((N-1)/4)]):

G:= map(p -> [Re, Im](GaussInt:-GIfactors(p)[2][1][1]), Primes):

f:= proc(ab) local j;

  for j from 2 do if not isprime(ab[1]^(2^j)+ab[2]^(2^j)) then return(j-1) fi od

end proc:

map(f, G); # Robert Israel, May 28 2015

MATHEMATICA

nn = 35; pr = {}; Do[p = a^2 + b^2; If[p < nn^2 && PrimeQ[p], AppendTo[pr, {p, a, b}]], {a, nn}, {b, a}]; pr = Sort[pr]; {jnk, a, b} = Transpose[pr]; Table[i = 1; While[PrimeQ[a[[n]]^2^i + b[[n]]^2^i], i++]; i - 1, {n, 2, Length[pr]}] (* T. D. Noe, Apr 24 2012 *)

PROG

(PARI) f(p)=my(s=lift(sqrt(Mod(-1, p))), x=p, t); if(s>p/2, s=p-s); while(s^2>p, t=s; s=x%s; x=t); s

forprime(p=5, 1e3, if(p%4==1, a=f(p); b=sqrtint(p-a^2); n=1; while(ispseudoprime(a^(2^n)+b^(2^n)), n++); print1(n-1", ")))

\\ Charles R Greathouse IV, Apr 24 2012

CROSSREFS

Sequence in context: A028947 A068152 A278970 * A217435 A238352 A079636

Adjacent sequences:  A182196 A182197 A182198 * A182200 A182201 A182202

KEYWORD

nonn

AUTHOR

Thomas Ordowski, Apr 20 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 4 19:31 EST 2016. Contains 278755 sequences.