login
This site is supported by donations to The OEIS Foundation.

 

Logo

The submissions stack has been unacceptably high for several months now. Please voluntarily restrict your submissions and please help with the editing. (We don't want to have to impose further limits.)

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A182199 Largest integer N such that a^(2^k) + b^(2^k) for 1 <= k <= N is prime, where p = a^2 + b^2 is the n-th prime of the form 4m+1. 2
4, 2, 3, 2, 2, 2, 2, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 1, 1, 2, 1, 2, 1, 2, 2, 2, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

a(1) corresponds to the first four Fermat primes. - Thomas Ordowski, Apr 22 2012

Schinzel's hypothesis H implies that there are arbitrarily large terms in the sequence. - Thomas Ordowski, Apr 26 2012

First value > 4 is a(102416) = 5 (corresponding to p = 2823521). - Robert Israel, May 28 2015

First value > 5 is a(4250044) = 6 (corresponding to p = 151062433). - Giovanni Resta, Jun 09 2015

LINKS

Charles R Greathouse IV, Table of n, a(n) for n = 1..10000

EXAMPLE

Let f(p,k) = a^(2^k)+b^(2^k), where f(p,1) = p is a prime of form 4k+1.

f(5,1) = 5, f(5,2) = 17, f(5,3) = 257, f(5,4) = 65537, f(5,5) = 641*6700417. So N = 4. Next prime of form 4k+1 is 13; N = 2. 17; N = 3. etc.

MAPLE

N:= 10^4: # to get values corresponding to primes <= N

Primes:= select(isprime, [4*i+1 $ i=1..floor((N-1)/4)]):

G:= map(p -> [Re, Im](GaussInt:-GIfactors(p)[2][1][1]), Primes):

f:= proc(ab) local j;

  for j from 2 do if not isprime(ab[1]^(2^j)+ab[2]^(2^j)) then return(j-1) fi od

end proc:

map(f, G); # Robert Israel, May 28 2015

MATHEMATICA

nn = 35; pr = {}; Do[p = a^2 + b^2; If[p < nn^2 && PrimeQ[p], AppendTo[pr, {p, a, b}]], {a, nn}, {b, a}]; pr = Sort[pr]; {jnk, a, b} = Transpose[pr]; Table[i = 1; While[PrimeQ[a[[n]]^2^i + b[[n]]^2^i], i++]; i - 1, {n, 2, Length[pr]}] (* T. D. Noe, Apr 24 2012 *)

PROG

(PARI) f(p)=my(s=lift(sqrt(Mod(-1, p))), x=p, t); if(s>p/2, s=p-s); while(s^2>p, t=s; s=x%s; x=t); s

forprime(p=5, 1e3, if(p%4==1, a=f(p); b=sqrtint(p-a^2); n=1; while(ispseudoprime(a^(2^n)+b^(2^n)), n++); print1(n-1", ")))

\\ Charles R Greathouse IV, Apr 24 2012

CROSSREFS

Sequence in context: A018845 A028947 A068152 * A217435 A238352 A079636

Adjacent sequences:  A182196 A182197 A182198 * A182200 A182201 A182202

KEYWORD

nonn

AUTHOR

Thomas Ordowski, Apr 20 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified August 29 10:37 EDT 2015. Contains 261188 sequences.