login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A182187 a(n) is the least m >= n such that the Hamming distance D(n,m) = 2. 5
3, 2, 4, 5, 7, 6, 10, 11, 11, 10, 12, 13, 15, 14, 22, 23, 19, 18, 20, 21, 23, 22, 26, 27, 27, 26, 28, 29, 31, 30, 46, 47, 35, 34, 36, 37, 39, 38, 42, 43, 43, 42, 44, 45, 47, 46, 54, 55, 51, 50, 52, 53, 55, 54, 58, 59, 59, 58, 60, 61, 63, 62, 94, 95, 67, 66, 68 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

a(n) = n<+>2 (see comment in A206853).

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..1000

FORMULA

If n is odd, then a(n) = n+2^(A007814(n+1)-1); if n==2 (mod 4), then a(n) = n+2^(A007814(n+2)-1); if n==0 (mod 4), then a(n) = n+3.

Using this formula, we can prove the conjecture formulated in comment in A209554 in the case k=2. Moreover, let us show that if N does not have the form 8*t or 8*t+1, then it can be represented in the form n<+>2. Indeed, in the cases N = 8*t+2, 8*t+4, 8*t+6, 8*t+3, 8*t+5 and 8*t+7 it is sufficient to choose n=N-4, n=N-2, n=N-1, n=N-3, n=N-2 and n = N-3 respectively; in the cases 8*t, 8*t+1, for every choice of n <= N, we do not obtain the equality n<+>2 = N.

In addition, note that n<+>1 = n + 2^A007814(n+1) = A086799(n+1).

MAPLE

HD:= proc(i, j) local d, n, m; d, n, m:= 0, i, j;

       while n>0 or m>0 do

           d:= d +abs(irem(n, 2, 'n') -irem(m, 2, 'm'))

       od; d

     end:

a:= proc(n) local c;

      for c from n do if HD(n, c)=2 then return c fi od

    end:

seq (a(n), n=0..100);  # Alois P. Heinz, Apr 17 2012

MATHEMATICA

t={}; Do[i=n+1; While[Count[IntegerDigits[BitXor[n, i], 2], 1]!=2, i++]; AppendTo[t, i], {n, 0, 66}]; t (* Jayanta Basu, May 26 2013 *)

PROG

(Sage)

def A182187(n):

    S = n.bits(); T = S; c = n; L = len(S)

    while true:

         H = sum(a != b for a, b in zip(S, T))

         if H == 2: return c

         c += 1; T = c.bits()

         if len(T) > L: L += 1; S.append(0)

[A182187(n) for n in (0..66)]   # Peter Luschny, May 26 2013

CROSSREFS

Cf. A205509, A205510, A205511, A205302, A205649, A205533, A122565, A206852, A206853, A206960, A207063, A209544, A209554, A007814, A086799.

Sequence in context: A056011 A117123 A116966 * A163241 A234027 A165279

Adjacent sequences:  A182184 A182185 A182186 * A182188 A182189 A182190

KEYWORD

nonn,base

AUTHOR

Vladimir Shevelev, Apr 17 2012

EXTENSIONS

More terms from Alois P. Heinz, Apr 17 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 21 05:01 EST 2017. Contains 294988 sequences.