login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A182187 a(n) is the least m >= n such that the Hamming distance D(n,m) = 2. 7
3, 2, 4, 5, 7, 6, 10, 11, 11, 10, 12, 13, 15, 14, 22, 23, 19, 18, 20, 21, 23, 22, 26, 27, 27, 26, 28, 29, 31, 30, 46, 47, 35, 34, 36, 37, 39, 38, 42, 43, 43, 42, 44, 45, 47, 46, 54, 55, 51, 50, 52, 53, 55, 54, 58, 59, 59, 58, 60, 61, 63, 62, 94, 95, 67, 66, 68 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

a(n) = n<+>2 (see comment in A206853).

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..1000

FORMULA

If n is odd, then a(n) = n+2^(A007814(n+1)-1); if n == 2 (mod 4), then a(n) = n+2^(A007814(n+2)-1); if n == 0 (mod 4), then a(n) = n+3.

Using this formula, we can prove the conjecture formulated in comment in A209554 in the case k=2. Moreover, let us show that if N does not have the form 8*t or 8*t+1, then it can be represented in the form n<+>2. Indeed, in the cases N = 8*t+2, 8*t+4, 8*t+6, 8*t+3, 8*t+5 and 8*t+7 it is sufficient to choose n=N-4, n=N-2, n=N-1, n=N-3, n=N-2 and n = N-3 respectively; in the cases 8*t, 8*t+1, for every choice of n <= N, we do not obtain the equality n<+>2 = N.

In addition, note that n<+>1 = n + 2^A007814(n+1) = A086799(n+1).

MAPLE

HD:= (i, j)-> add(h, h=Bits[Split](Bits[Xor](i, j))):

a:= proc(n) local c;

      for c from n do if HD(n, c)=2 then return c fi od

    end:

seq(a(n), n=0..100);  # Alois P. Heinz, Apr 17 2012

MATHEMATICA

t={}; Do[i=n+1; While[Count[IntegerDigits[BitXor[n, i], 2], 1]!=2, i++]; AppendTo[t, i], {n, 0, 66}]; t (* Jayanta Basu, May 26 2013 *)

PROG

(Sage)

def A182187(n):

    S = n.bits(); T = S; c = n; L = len(S)

    while true:

         H = sum(a != b for a, b in zip(S, T))

         if H == 2: return c

         c += 1; T = c.bits()

         if len(T) > L: L += 1; S.append(0)

[A182187(n) for n in (0..66)]   # Peter Luschny, May 26 2013

(Python)

def a(n):

  m = n + 1

  while bin(n^m).count('1') != 2: m += 1

  return m

print([a(n) for n in range(67)]) # Michael S. Branicky, Mar 02 2021

(PARI) a(n) = bitxor(n, 3<<valuation(n>>1+1, 2)); \\ Kevin Ryde, Jul 09 2021

CROSSREFS

Cf. A206853 (trajectory of 1), A207063 (trajectory of 0).

Cf. A209544 (primes which are not terms), A209554 (and also not n<+>3).

Cf. A086799 ((n-1)<+>1), A182209 (n<+>3), A182336 (n<+>4).

Cf. A205509, A205510, A205511, A205302, A205649, A205533, A122565, A206852, A206960, A007814.

Sequence in context: A056011 A117123 A116966 * A334652 A163241 A234027

Adjacent sequences:  A182184 A182185 A182186 * A182188 A182189 A182190

KEYWORD

nonn,base,easy

AUTHOR

Vladimir Shevelev, Apr 17 2012

EXTENSIONS

More terms from Alois P. Heinz, Apr 17 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 28 01:47 EDT 2022. Contains 357063 sequences. (Running on oeis4.)