%I #37 Aug 02 2018 15:22:28
%S 1,3,11,51,307,2451,26387,387987,7866259,221472147,8703733139,
%T 479243212179,37070813107603,4036214347068819,619402703369958803,
%U 134108807406166799763,40994263184865380595091,17700624176280878586721683,10799420012335823235718509971
%N Number of affine subspaces of GF(2)^n.
%C q-binomial transform of A000079 for q=2. - _Vladimir Reshetnikov_, Oct 17 2016
%C From _Geoffrey Critzer_, Jul 15 2017: (Start)
%C a(n) is the total number of vectors in all subspaces of GF(2)^n.
%C a(n) is the number of subspaces of GF(2)^(n+1) that do not contain a given nonzero vector. (End)
%H Gaëtan Leurent, <a href="/A182176/b182176.txt">Table of n, a(n) for n = 0..100</a>
%H Geoffrey Critzer, <a href="https://esirc.emporia.edu/handle/123456789/3595">Combinatorics of Vector Spaces over Finite Fields</a>, Master's thesis, Emporia State University, 2018.
%F a(n) = Sum_{k=0..n} (2^n/2^k * Product_{i=0..k-1} (2^n - 2^i)/(2^k - 2^i)).
%F G.f.: Sum_{n>=0} x^n / Product_{k=1..n+1} (1-2^k*x). - _Paul D. Hanna_, May 01 2012
%F a(n) ~ c * 2^((n+1)^2/4), where c = EllipticTheta[2, 0, 1/2] / QPochhammer[1/2, 1/2] = A242939 = 7.3719494907662273375414118336... if n is even, and c = EllipticTheta[3, 0, 1/2] / QPochhammer[1/2, 1/2] = A242938 = 7.3719688014613165091531912082... if n is odd. - _Vaclav Kotesovec_, Jun 22 2014
%F a(n)/[n]_q! is the coefficient of x^n in the expansion of (1 + x)*exp_q( x)*exp_q(x) when q->2 and where exp_q(x) is the q exponential function and [n]_q! is the q-factorial of n. - _Geoffrey Critzer_, Jul 15 2017
%F a(n) = (2^n - 1)*A006116(n-1) + A006116(n). - _Geoffrey Critzer_, Jul 15 2017
%e For n=2, there are 4 affine subspaces of dimension 0, 6 of dimension 1, and 1 of dimension 2.
%t Table[Sum[2^n/2^k * Product[(2^n-2^i)/(2^k-2^i),{i,0,k-1}],{k,0,n}],{n,0,20}] (* _Vaclav Kotesovec_, Jun 22 2014 *)
%t Table[Sum[QBinomial[n, k, 2] 2^k, {k, 0, n}], {n, 0, 20}] (* _Vladimir Reshetnikov_, Oct 17 2016 *)
%o (Sage) def a(n): return sum([(2^n/2^k)*prod([(2^n-2^i)/(2^k-2^i) for i in [0..k-1]]) for k in [0..n]])
%o (PARI) {a(n)=polcoeff(sum(m=0,n,x^m/prod(k=1,m+1,1-2^k*x+x*O(x^n))),n)} /* _Paul D. Hanna_, May 01 2012 */
%o (GAP) List([0..20],n->Sum([0..n],k->(2^n/2^k*Product([0..k-1],i->(2^n-2^i)/(2^k-2^i))))); # _Muniru A Asiru_, Aug 01 2018
%Y Cf. A006116.
%K nonn,easy
%O 0,2
%A _Gaëtan Leurent_, Apr 16 2012