This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A182171 Area A of the triangles such that A, the sides and three perpendicular bisectors are integers. 1
 108, 384, 432, 768, 972, 1536, 1728, 2700, 3072, 3456, 3888, 5292, 6144, 6912, 8748, 9600, 10800, 12288, 13068, 13824, 15552, 17280, 18252, 18816, 18900, 19200, 21168, 24300, 24576, 27000, 27648, 31104, 31212, 34560, 34992, 37632 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Let a triangle with the angles (A, B, C) and the sides opposite the angles labeled (a, b, c). The length of the perpendicular bisectors is given by (x, y, z) where: x is the perpendicular bisector passing through the midpoint of the segment BC = a; y is the perpendicular bisector passing through the midpoint of the segment AC = b; z is the perpendicular bisector passing through the midpoint of the segment AB = c. We obtain the relations: x = (a/2)*tg B if x intersects AB or (a/2)* tg C if x intersects AC; y = (b/2)* tg A if y intersects AB or (b/2)* tg C if y intersects BC; z = (c/2)*tg A if z intersects AC or (c/2) *tg B if z intersects BC. The area A of the triangle whose sides have lengths a, b, and c is given by Heron's formula: A = sqrt(s*(s-a)*(s-b)*(s-c)), where s = (a+b+c)/2. Finally, we obtain: x = (a/2) * min {tg B, tg C }; y = (b/2) * min {tg A, tg C }; z = (c/2) * min {tg A, tg B } with tg A = 4*A/(b^2+c^2-a^2) ; tg B = 4*A/(c^2+a^2-b^2) ; tg C = 4*A/(a^2+b^2-c^2). Properties of this sequence: The numbers of the form 108*n^2, 384*n^2, 768*n^2, 17280*n^2, 18900*n^2 are in the sequence because the area of the primitive triangles (15, 15, 18), (24, 32, 40), (40, 40, 64), (120, 288, 312), (150, 255, 315) are 108, 384, 768 , 17280 and 18900 respectively. There exists three class of numbers included into a(n) : Case (i) : a subset of isosceles triangles; Case (ii) : a subset of right triangles; Case (iii) : other (neither isosceles nor right triangle). LINKS Ray Chandler, Table of n, a(n) for n = 1..65 Eric W. Weisstein, MathWorld: Triangle FORMULA x = Min{2*a*A/(c^2+a^2-b^2) , 2*a*A/(a^2+b^2-c^2)}; y = Min{2*b*A/(a^2+b^2-c^2)  , 2*b*A/(b^2+c^2-a^2)}; z = Min{2*c*A/(c^2+a^2-b^2)  , 2*c*A/(b^2+c^2-a^2)}. EXAMPLE Primitive solutions follow: Area,  ( a,   b,   c),  ( x,   y,   z), Case   108,  (15,  15,  18),  (10,  10,  12), Isosceles,   384,  (24,  32,  40),  (16,  12,  15), Right,   768,  (40,  40,  64),  (15,  15,  24), Isosceles, 17280, (120, 288, 312), (144,  60,  65), Right, 18900, (150, 255, 315), (100,  68,  84), Other, 27000, (255, 255, 450),  (68,  68, 120), Isosceles, 34560, (312, 312, 576),  (65,  65, 120), Isosceles, 53760, (272, 400, 448), (255, 150, 168), Other, 54000, (240, 450, 510), (225, 120, 136), Right, 91476, (429, 462, 495), (364, 308, 330), Other, 95256, (252, 819, 945), (168, 104, 120), Other, 96768, (336, 720, 960), (126, 105, 140), Other. MAPLE zz:=evalf(1/10^6):k:=0:nn:=350: for a from 15 to nn do:    for b from a to nn do:        for c from b to nn do:              p:=(a+b+c)/2:s:=p*(p-a)*(p-b)*(p-c):              u:= a^2+b^2-c^2:v:= b^2+c^2-a^2 :w:=c^2+a^2-b^2:              if s>0 then s1:=sqrt(s):else fi:              if u>0 then u0:=u:else u0:=zz:fi:              if v>0 then v0:=v:else vo:=zz:fi:              if w>0 then w0:=w:else w0:=zz:fi: a0:= evalf(2*a*s1/w0):a1:=evalf(2*a*s1/u0): b0:= evalf(2*b*s1/u0):b1:=evalf(2*b*s1/v0): c0:= evalf(2*c*s1/w0):c1:=evalf(2*c*s1/v0):              if a0

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 16 13:51 EDT 2019. Contains 328093 sequences. (Running on oeis4.)