

A182101


Random walk determined by the binary digits of the Dottie number, A003957.


1



0, 1, 0, 1, 2, 3, 4, 3, 4, 3, 2, 3, 4, 3, 4, 3, 2, 3, 2, 3, 2, 3, 4, 5, 4, 5, 6, 7, 6, 7, 8, 7, 6, 5, 4, 3, 4, 5, 6, 7, 6, 5, 6, 7, 8, 7, 6, 5, 6, 5, 6, 7, 6, 7, 8, 7, 8, 9, 10, 9, 8, 9, 8, 9, 8, 9, 10, 9, 10, 9, 10
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,5


COMMENTS

Start at a(0)=0. Each 0 in the binary expansion corresponds to a step of 1, while a 1 corresponds to a step of +1.
Partial sums of the sequence 2*A121967(n)1.
The first time a(n) is negative is n=93.


LINKS

G. C. Greubel, Table of n, a(n) for n = 0..5000


EXAMPLE

a(5)=3, and the sixth bit of the Dottie number is 1, so a(6)=4.
On the other hand, the seventh bit of the Dottie number is 0, so a(7)=3.


MATHEMATICA

Accumulate[RealDigits[FindRoot[Cos[x] == x, {x, 0}, WorkingPrecision > 1000][[1, 1]], 2][[1]] 2  1]


CROSSREFS

Cf. A003957, A121967, A166006 (analogous sequence for Pi).
Sequence in context: A106826 A259582 A139048 * A242289 A158515 A285884
Adjacent sequences: A182098 A182099 A182100 * A182102 A182103 A182104


KEYWORD

sign,base


AUTHOR

Ben Branman, Apr 11 2012


STATUS

approved



