login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A182087 Carmichael numbers of the form C = (30n-p)*(60n-(2p+1))*(90n-(3p+2)), where n is a natural number and p, 2p+1, 3p+2 are all three prime numbers. 2
1729, 172081, 294409, 1773289, 4463641, 56052361, 118901521, 172947529, 216821881, 228842209, 295643089, 798770161, 1150270849, 1299963601, 1504651681, 1976295241, 2301745249, 9624742921, 11346205609, 13079177569 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

These numbers can be reduced to only two possible forms: C =(30n-23)*(60n-47)*(90n-71) or C = (30n-29)*(60n-59)*(90n-89). In the first form, for the particular case when 30n-23,60n-47 and 90n-71 are all three prime numbers, we obtain the Chernick numbers of the form 10m+1 (for k = 5n-4 we have C = (6k+1)*(12k+1)*(18k+1)). In the second form,  for the particular case when 30n-29,60n-59 and 90n-89 are all three prime numbers, we obtain the Chernick numbers of the form 10m+9 (for k = 5n-5 we have C = (6k+1)*(12k+1)*(18k+1)).

So the Chernick numbers can be divided into two categories: Chernick numbers of the form (30n+7)*(60n+13)*(90n+19) and Chernick numbers of the form (30n+1)*(60n+1)*(90n+1).

LINKS

Charles R Greathouse IV, Table of n, a(n) for n = 1..10000

E. W. Weisstein, MathWorld: Carmichael Number

PROG

(PARI) list(lim)={

    my(v=List(), f);

    for(k=1, round(solve(x=(lim/162000)^(1/3), lim^(1/3), (30*x-23)*(60*x-47)*(90*x-71)-lim)),

        n=(30*k-23)*(60*k-47)*(90*k-71)-1;

        f=factor(30*k-23);

        for(i=1, #f[, 1], if(f[i, 2]>1 || n%(f[i, 1]-1), next(2)));

        f=factor(60*k-47);

        for(i=1, #f[, 1], if(f[i, 2]>1 || n%(f[i, 1]-1), next(2)));

        f=factor(90*k-71);

        for(i=1, #f[, 1], if(f[i, 2]>1 || n%(f[i, 1]-1), next(2)));

        listput(v, n+1)

    );

    for(k=2, round(solve(x=(lim/162000)^(1/3), lim^(1/3), (30*x-29)*(60*x-59)*(90*x-89)-lim)),

        n=(30*k-29)*(60*k-59)*(90*k-89)-1;

        f=factor(30*k-29);

        for(i=1, #f[, 1], if(f[i, 2]>1 || n%(f[i, 1]-1), next(2)));

        f=factor(60*k-59);

        for(i=1, #f[, 1], if(f[i, 2]>1 || n%(f[i, 1]-1), next(2)));

        f=factor(90*k-89);

        for(i=1, #f[, 1], if(f[i, 2]>1 || n%(f[i, 1]-1), next(2)));

        listput(v, n+1)

    );

    vecsort(Vec(v))

}; \\ Charles R Greathouse IV, Oct 02 2012

CROSSREFS

Cf. A033502, A206347.

Sequence in context: A265628 A272798 A212920 * A033502 A277366 A050794

Adjacent sequences:  A182084 A182085 A182086 * A182088 A182089 A182090

KEYWORD

nonn

AUTHOR

Marius Coman, Apr 11 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 6 03:18 EST 2016. Contains 278772 sequences.