login
A182078
Odd numbers n such that the reduced Collatz map n -> (3n+1)/2^k gives a trajectory of decreasing odd numbers.
1
5, 13, 17, 21, 45, 53, 69, 85, 113, 141, 181, 213, 241, 277, 301, 321, 341, 369, 401, 453, 565, 725, 753, 853, 909, 965, 1069, 1109, 1137, 1205, 1285, 1365, 1425, 1477, 1605, 1713, 1813, 1933, 1969, 2261, 2417, 2573, 2577, 2625, 2901, 2957, 3013, 3213, 3413
OFFSET
1,1
EXAMPLE
45 is in the sequence because 45 generates the trajectory of odd numbers : 45 -> 17 -> -> 13 -> 5 -> 1.
MAPLE
for n from 3 by 2 to 5000 do:i:=0:x:=n:n0:=n: u0:=0:for it from 1 to 1000 while(n0<>1 and u0=0) do: for a from 1 to 100 while(x mod 2 = 0 ) do: i:=i+1:x:=x/2: od:if x > n0 then u0:=1:else i:=i+1:n0:=x :x:=3*n0+1: fi:od: if u0=0 then printf(`%d, `, n):else fi:od:
CROSSREFS
Cf. A006666, A075677 (reduced Collatz map), A256598 (trajectory).
Sequence in context: A014539 A249034 A208883 * A074278 A087895 A092101
KEYWORD
nonn
AUTHOR
Michel Lagneau, Apr 10 2012
STATUS
approved