

A182067


Floor(n)floor(n/2)floor(n/3)floor(n/5)+floor(n/30).


1



0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0


COMMENTS

The sequence takes only the values 0 and 1 and is periodic with period 30. The sequence was used by Chebyshev to obtain the estimate for the prime counting function 0.92*x/log(x) <= #{primes <= x} <= 1.11*x/log(x), for x sufficiently large.


LINKS

Table of n, a(n) for n=0..87.
H. G. Diamond, Elementary methods in the study of the distribution of prime numbers, Bull. Amer. Math. Soc., Vol.7 (3), 1982
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).


CROSSREFS

Cf. A211417.
Sequence in context: A204549 A204437 A257799 * A196147 A242647 A211487
Adjacent sequences: A182064 A182065 A182066 * A182068 A182069 A182070


KEYWORD

nonn,easy


AUTHOR

Peter Bala, Apr 11 2012


STATUS

approved



