login
A182031
Expansion of q^(-5/24) * (eta(q^3) * eta(q^6))^3 / (eta(q) * eta(q^2))^4 in powers of q.
1
1, 4, 18, 53, 163, 414, 1059, 2431, 5553, 11844, 25013, 50391, 100362, 193136, 367371, 680705, 1247247, 2238408, 3975218, 6941384, 12003156, 20465599, 34581525, 57737205, 95601892, 156665029, 254777220, 410580026, 657015874
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
REFERENCES
H.-C. Chan, On the Andrews-Schur proof of the Rogers-Ramanujan identities, Ramanujan J. 23 (2010), no. 1-3, 417-431. see p. 430 Theorem 7.
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of (psi(x^3) * phi(-x^3))^3 / (psi(x) * phi(-x))^4 in powers of x where phi(), psi() are Ramanujan theta functions.
Euler transform of period 6 sequence [ 4, 8, 1, 8, 4, 2, ...].
A002513(3*n + 2) = 3 * a(n).
EXAMPLE
1 + 4*x + 18*x^2 + 53*x^3 + 163*x^4 + 414*x^5 + 1059*x^6 + 2431*x^7 + ...
q^5 + 4*q^13 + 18*q^21 + 53*q^29 + 163*q^37 + 414*q^45 + 1059*q^53 + ...
MATHEMATICA
eta[q_]:= q^(1/24)*QPochhammer[q]; CoefficientList[Series[q^(-5/8)*(eta[q^3]*eta[q^6])^3/(eta[q]*eta[q^2])^4, {q, 0, 100}], q] (* G. C. Greubel, Apr 16 2018 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^3 + A) * eta(x^6 + A))^3 / (eta(x + A) * eta(x^2 + A))^4, n))}
(PARI) q='q+O('q^99); Vec((eta(q^3)*eta(q^6))^3/(eta(q)*eta(q^2))^4) \\ Altug Alkan, Apr 16 2018
CROSSREFS
Cf. A002513.
Sequence in context: A297945 A320544 A020644 * A212250 A229788 A242206
KEYWORD
nonn
AUTHOR
Michael Somos, Apr 07 2012
STATUS
approved