login
A182014
Number of independent sets of nodes in graph C_7 x P_n (n>=0).
2
1, 29, 477, 8303, 143697, 2488431, 43089985, 746156517, 12920616493, 223736359029, 3874270087045, 67087749098875, 1161706844818941, 20116382073294655, 348339884131004417, 6031933298656980345, 104450339960964929961, 1808686034441106749965
OFFSET
0,2
LINKS
C. Bautista-Ramos and C. Guillen-Galvan, Fibonacci numbers of generalized Zykov sums, J. Integer Seq., 15 (2012), Article 12.7.8.
FORMULA
a(n) = 17*a(n-1) + 8*a(n-2) - 44*a(n-3) + 5*a(n-4) + a(n-5) with a(0)=1, a(1)=29, a(2)=477, a(3)=8303, a(4)=143697.
G.f.: (x^4+6*x^3-24*x^2+12*x+1)/(-x^5-5*x^4+44*x^3-8*x^2-17*x+1).
MATHEMATICA
LinearRecurrence[{17, 8, -44, 5, 1}, {1, 29, 477, 8303, 143697}, 30] (* Harvey P. Dale, Aug 27 2012 *)
PROG
(PARI) Vec((x^4+6*x^3-24*x^2+12*x+1)/(-x^5-5*x^4+44*x^3-8*x^2-17*x+1)+O(x^99)) \\ Charles R Greathouse IV, Apr 06 2012
CROSSREFS
Row 7 of A286513.
Sequence in context: A125486 A282925 A022657 * A261540 A173986 A258462
KEYWORD
nonn,easy
AUTHOR
Cesar Bautista, Apr 06 2012
STATUS
approved