OFFSET
0,2
LINKS
Cesar Bautista, Table of n, a(n) for n = 0..399
C. Bautista-Ramos and C. Guillen-Galvan, Fibonacci numbers of generalized Zykov sums, J. Integer Seq., 15 (2012), Article 12.7.8.
Index entries for linear recurrences with constant coefficients, signature (17,8,-44,5,1).
FORMULA
a(n) = 17*a(n-1) + 8*a(n-2) - 44*a(n-3) + 5*a(n-4) + a(n-5) with a(0)=1, a(1)=29, a(2)=477, a(3)=8303, a(4)=143697.
G.f.: (x^4+6*x^3-24*x^2+12*x+1)/(-x^5-5*x^4+44*x^3-8*x^2-17*x+1).
MATHEMATICA
LinearRecurrence[{17, 8, -44, 5, 1}, {1, 29, 477, 8303, 143697}, 30] (* Harvey P. Dale, Aug 27 2012 *)
PROG
(PARI) Vec((x^4+6*x^3-24*x^2+12*x+1)/(-x^5-5*x^4+44*x^3-8*x^2-17*x+1)+O(x^99)) \\ Charles R Greathouse IV, Apr 06 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Cesar Bautista, Apr 06 2012
STATUS
approved