

A182006


Lengths of periods of iterations described in A182005 for terms of A182005.


1



2, 3, 2, 2, 3, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 3, 3, 3, 2, 3, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 3, 2, 3, 3, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 3
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Period of length 4 occurs for terms of A182005 equaled 91, 405, 659, 873, 1335, 1723, 1751,... For example, for 91 we have period {52, 50, 60, 54}. Up to now, periods of lengths 5 or 6 were not found.


LINKS

Table of n, a(n) for n=1..98.


MATHEMATICA

period[seq_] := (If[Last[#1] == {}  Length[#1] == Length[seq] 1, 0, Length[#1]]&)[NestWhileList[Rest, Rest[seq], #1 != Take[seq, Length[#1]]&, 1]]; {A182005, A182006} = Transpose[Select[Table[{n, period[Take[Module[{p}, Flatten[{p=Apply[Plus, IntegerDigits[2^#, 3]], Table[p=Apply[Plus, IntegerDigits[2^#+p, 3]], {40}]}&[n]]], 20]]}, {n, 1, 500}], #[[2]] =!= 1&]]


CROSSREFS

Cf. A182005.
Sequence in context: A143393 A166497 A116909 * A085239 A242872 A241604
Adjacent sequences: A182003 A182004 A182005 * A182007 A182008 A182009


KEYWORD

nonn,base


AUTHOR

Vladimir Shevelev and Peter J. C. Moses, Apr 06 2012


STATUS

approved



